您好,欢迎访问三七文档
Hertz接触理论Hertz接触理论•很久以来,人们就对接触物体表面的应力、应变、位移及相对滑移感兴趣。早在1881年Hertz首次解决两弹性球体受压接触面之间的压力分布问题。其后将类似方法推广到一般的弹性体接触情形。在处理方法中用到了下面一些假设:•(1)接触区域通常都是椭圆的,并且接触物体是各向同性的线弹性体;•(2)每个物体均可被看作是一个弹性半空间体;•(3)接触表面是无摩擦的,两物体之间仅传递法向压力,不传递切向力;•根据这些假设,利用半无限表面受垂直集中力作用的解,从垂直位移的几何条件中导了接触问题的积分方程,并且用假设的方法求出了问题的解。2020/5/302Hertz接触理论•Hertz的工作引起力学和数学工作者的很大兴趣。一百多年来,接触理论有了很多进展,主要有如下几方面:•(1)更多类型的接触面或几何形状不同的物体的接触问题得到解决;•(2)接触面之间的应力类型是复杂些的接触问题,例如除正应力外还有切应力(摩擦接触)得到发展;•(3)接触物体的材料不限于各向同性弹性材料,例如接触物体之一为刚体,或粒状材料等;•(4)与解决上述问题包括二维情形有密切联系的数学方法,如复变函数,奇异积分方程,积分变换等得到发展。此外弹性接触理论与流体力学相组合等问题也有进展。2020/5/303Hertz接触理论•如图所示为两个物体的接触示意图,在两个主平面上具有不同的曲率半径ρ1、ρ2。在载荷F的作用下接触,当载荷Q为0时,接触为一点,当载荷逐渐增大,接触区域应力值变化成一椭圆。2020/5/304Hertz接触理论点接触的两物体,在负荷Q的作用下,接触区域将扩展成为一个接触面。该接触面在与接触法线垂直面的投影为一椭圆,长轴为2a,短轴为2b。2020/5/305Hertz接触理论在接触区内,各点的上的接触应力大小是不同的。在Z轴上,由于变形最大,故其接触应力最大。2020/5/306Hertz接触理论2020/5/307其他点上的接触应力按半椭球规律分布总压力Q应等于:从几何意义上看,此积分就等于半椭球的体积,故有:最大接触应力为Hertz接触理论其中长半轴a,短半轴b的计算公式为:2020/5/308E′——当量弹性模量其中:为两接触物体的弹性模量为两接触物体的泊松比为两物体在接触点处的主曲率的和Hertz接触理论2020/5/309其中接触椭圆的长短半轴系数分别为:k——椭圆率,k=b/aL(e)——与椭圆偏心率e有关的第二类完全椭圆积分椭圆偏心率与椭圆率的关系为:Hertz接触理论赫兹接触变形公式为:2020/5/3010K(e)——与椭圆偏心率e有关的第一类完全椭圆积分主曲率函数可表示为:Hertz接触理论在对赫兹点接触理论进行求解时,需要用数值积分和数值迭代的方法,不便于进行求解。为了便于计算,传统的求解方法是采用查表的方法,即首先计算出的值,再根据的值查表得出系数、、的值,由上述公式计算出接触问题的相关解。2020/5/3011Hertz接触理论2020/5/3012Hertz接触理论2020/5/3013实例:两弹性体之间的接触压力问题•两球体的接触问题•圆球与平面(或凹球面)的接触•例题Hertz接触理论2020/5/3014一.两球体的接触问题根据半空间体在边界上受法向分布力中有关知识,可导出两弹性体之间的接触压力以及由此所引起的应力和变形,下面我们先对两弹性球体进行讨论。设两个球体半径分别为R1和R2,如图。Hertz接触理论2020/5/3015设开始时两球体不受压力作用,它仅接触于一点O,那么此时,在两球体表面上取距公共法线距离为r的M1和M2两点,与O点的切平面之间的距离z1和z2.则由几何关系有:(R1-z1)2+r2=R12(R2-z2)2+r2=R22得11212zRrz22222zRrzHertz接触理论2020/5/3016当M1,M2离O点很近时,则z1<<R1,z2<<R2,上面两式可化为:1212Rrz2222Rrz(a)而M1、M2两点之间的距离为:22121212212)2121(rRRRRRRrzzHertz接触理论2020/5/3017当两球体沿接触点的公共法线用力F相压时,在接触点的附近,将产生局部变形而形成一个圆形的接触面。由于接触面边界的半径总是远小于R1、R2,所以可以采用关于半无限体的结果来讨论这种局部变形。设α为圆心O1、O2因压缩而相互接近的距离,如果M1与O1、M2与O2之间无相对移动,则M1与M2之间接近的距离也为α;Hertz接触理论2020/5/3018现分别用w1和w2表示M1点沿z1方向的位移及M2点沿z2方向的位移(即相外的相对移动);于是M1点和M2点之间的距离减少为α-(w1+w2),如果点M1、M2由于局部变形而成为接触面内的同一点M,则由几何关系有:α-(w1+w2)=z1+z2将式(a)代入,得w1+w2=α-βr2(b)其中,21212RRRR(c)Hertz接触理论2020/5/3019根据对称性接触面一定是以接触点O为中心的圆。现以图中的圆表示接触面,而M点表示下面的球体在接触面上的一点(即变形以前的点M1),则按照弹性半空间受垂直压力q的解答,该点的位移为:ddπ11211sqEw其中ν1及E1为下面球体的弹性常数,而积分应包括整个接触面。对于上面的球体,也可以写出相似的表达式,于是:dd)(2121sqkkww(d)Hertz接触理论2020/5/3020其中1211π1Ek2222π1Ek并由(d)式及(c)式得221dd)(rsqkk到此,把问题归结为去寻求未知函数q(即要找出压力的分布规律),使式(e)得到满足。Hertz接触理论2020/5/3021根据Hertz的假设,如果在接触面的边界上作半圆球面,而用它在各个点的高度代表压力q各该点处的大小。例如弦mn上一点压力的大小,可用过mn所作半圆的高度h来代表。令q0表示接触圆中心O的压,则根据上述假定,应有q0=ka由此得:k=q0/ak这个常数因子表示压力分布的比例尺。Hertz接触理论2020/5/3022接触圆内任一点的压力,应等于半球面在该点的高度h和k=q0/a的乘积。由此,不难从图可以看出,Aaqshaqsq00ddA为弦mn上的半圆(用虚线表示)面的面积,即)sin(2222raAHertz接触理论2020/5/3023由于Aaqsq0d222021)2(4π)(rraaqkk)sin(2222raA代入后再代入式(e)202222021d)sin(22)(rraaqkk积分后得:221dd)(rsqkk有Hertz接触理论2020/5/3024要使此式对所有的r都成立,等号两边的常数项和r2的系数分别相等,于是有222021)2(4π)(rraaqkk2)(0221aqkk4)(0221qkk(g)Hertz接触理论2020/5/3025这样,只要式(g)成立,Hertz所假定的接触面上压力分布是正确的。根据平衡条件,上述半球体的体积与的乘积应等于总压力F,即Faaq3032由此的最大压力(h)它等于平均压力F/πa2的一倍半。将式(c)和式(h)代入式(g),求解a及α30π2/3aFqHertz接触理论2020/5/3026即得:由此并可求得最大接触压力为;3221212120)(π3)(4π2323RRkkFRRFaPq31212121)(4)(π3RRRRkkFa3121212212216)()(π9RRRRkkFHertz接触理论2020/5/3027在E1=E2=E及ν1=ν2=0.3时,由上列各式得出工程实践中广泛采用的公式:312121)(11.1RRERFRa31212212)(23.1RRERRF31222122120)(388.0RRRRFEqHertz接触理论2020/5/3028在求出接触面间的压力之后,可利用按照弹性半空间受垂直压力q的解答导出的公式计算出两球体中的应力。最大压应力发生在接触面中心,值为q0;最大剪应力发生在公共法线上距接触中心约为0.47a处,其值为0.31q0;最大拉应力发生在接触面的边界上,其值为0.133q0。Hertz接触理论2020/5/3029二.圆球与平面(或凹球面)的接触利用上面关于两弹性球体接触时的有关结论,可得如下公式:当圆球与平面接触时,将以上结果中的R1=R0,R2→∞则得:3122212101143FEERa3122222121011169FEER312221212030111π6EEFRqHertz接触理论2020/5/3030在E1=E2=E及ν1=ν2=0.3时30109.1EFRa3022231.1REF32020388.0RFEqHertz接触理论2020/5/3031当圆球与凹球面接触时,将以-R1代替两圆球接触时公式中的R1,则可得:3122212112211143FEERRRRa3122222121211211169FEERRRR312222121221123011π6FEERRRRqHertz接触理论2020/5/3032三.例题直径为10mm的钢球与a)直径为100mm的钢球;b)钢平面;c)半径为50mm的凹球面相接触,其间的压紧力P=10N,试球接触圆的半径a,两球中心相对位移α和最大接触应力q0(E=2.1×105N/mm2,ν=0.3)Hertz接触理论2020/5/3033解:31212212)(23.1RRERRF31222122120)(388.0RRRRFEq312121)(11.1RRERFRaa)直径为10mm的钢球与直径为100mm的钢球;=0.067mm=9.8×10-4mm=1080N/mmFHertz接触理论2020/5/3034b)直径为10mm的钢球与钢平面;30109.1EFRa3022231.1REF32020388.0RFEq=0.069mm=9.5×10-4mm=1010N/mmFHertz接触理论2020/5/3035c))直径为10mm的钢球与半径为50mm的凹球面相接触;=0.071mm=9.8×10-4mm=940N/mmF311221)(11.1RRERFRa31212122)(23.1RRERRF31222121220)(383.0RRRRFEq谢谢!
本文标题:赫兹接触
链接地址:https://www.777doc.com/doc-5641738 .html