您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 数学分析第十二章反常积分自测题解答
1数学分析第十二章反常积分自测题解答一、判断题(每小题2分,共12分)(√)1.若无穷积分()dafxx收敛,则无穷积分()dafxx也收敛.(×)2.axxa1d2)0(a.(√)3.无穷积分1sindxxx发散.(×)4.设a是非负函数)(xf的瑕点,且dxfxax)(lim,1,则瑕积分baxxfd)(收敛.(√)5.在[()()]dafxgxx收敛的条件下,()dafxx可能发散.(×)6.若无穷积分()dafxx收敛,则无穷积分2()dafxx也收敛.注:2.当0a时,0是被积函数21)(xxf的瑕点,且瑕积分02daxx发散.4.当a是)(xf的瑕点时,判别瑕积分的敛散性要考虑极限)()(limxfaxax.二、选择题(每小题2分,共10分)1.下列结论或运算正确的是(C).A.2311ddxxxxB.由于21xx是奇函数,故2d01xxx.C.4d01xxxD.由于arctanxx是偶函数,故0arctanarctand2dxxxxxx.注:无穷积分21dxx,31dxx,2d1xxx,0arctandxxx均发散;而24001πdarctan124xxxx,00241πdarctan124xxxx.2.()dfxx收敛是0()dfxx与0()dfxx都收敛的(A).A.充要条件B.必要条件C.充分条件D.无关条件3.下列广义积分中发散的是(D).A.211dxxB.101dxxC.1201d1xxD.101d1xx4.2211dxx(D).A.32B.12C.12D.不存在25.211d1xxx(B).A.0B.2C.4D.不存在注:21112221111ddd()11111xxxxxxxx11πarcsin2x.三、填空题(每小题2分,共10分)1.a是函数)(xf的瑕点)(xf在点a的任意邻域无界.2.无穷积分()dfxx发散RC,()dcfxx与()dcfxx之一发散.3.瑕积分21)2(dxx当λ满足1时收敛.4.当1时,无穷积分xxd)1(12发散.5.无穷积分xxxdsin1当λ满足10时条件收敛,当λ满足1时绝对收敛.四、求下列反常积分(每小题5分,共30分)1.21d93xx.解:由定义220001133πdlimdlimarctan93939923ppppxxxxx,000221133πdlimdlimarctan93939923qqqqxxxxx,故022201113dddπ9393939xxxxxx.2.211d(1)xxx.解:22221111111d()dlnln(1)lnln2(1)121xxxxxxxxxxx.3.d1xxexe.3解:000ddln(1)ln211xxxxxeexxeee,000ddln(1)ln211xxxxxeexxeee,故d2ln21xxexe.4.230d1xxx.解:1x是被积函数31)(xxxf的瑕点,分别考虑瑕积分130d1xxx与231d1xxx,有11123333000001dlimdlim[(1)]d111xxxxxxxxx15233003321lim[(1)(1)]5210xx,231d1xxx2310limd1xxx25233013321lim[(1)(1)]5210xx,故230d1xxx130d1xxx23121d51xxx.5.102dxxx.解:0a是被积函数xxxf2)(的瑕点,有111300022210d()d(4)33xxxxxxxx.6.101d(1)xxx.解:0a是被积函数)1(1)(xxxf的瑕点,有111000012dlimdlim2ln(1)2ln2(1)(1)xxxxxx.4五、判断下列反常积分的敛散性(每小题5分,共30分)1.120d1xxx.解:1b是被积函数21)(xxxf的瑕点.由112221111lim(1)()lim(1)lim121xxxxxxfxxxx,有112,12d,故瑕积分120d1xxx收敛.2.22211sindxxx.解:0x是被积函数xxxf1sin1)(2的瑕点.由于222001111limsindlim(sin)d()xxxxxπ20011limcoslim[cosπ-cos]x不存在,故瑕积分22011sindxxx发散,从而瑕积分22211sindxxx发散.3.220lnd(1)xxxx.解:由4222222lnlnlim()limlim0(1)(1)xxxxxxxxfxxxxx,有21,0d,故无穷积分220lnd(1)xxxx收敛.注:由于22220000ln1lim()limlimlimln0(1)(1)xxxxxxfxxxxx,故0x不是)(xf的瑕点.补充定义0)0(f,则被积函数)(xf在区间[0,)连续.4.21d(1)(2)xxxx.解:2x是被积函数)2)(1(1)(xxxxf的瑕点,分别考虑瑕积分321d(1)(2)xxxx与无穷积分31d(1)(2)xxxx,5由1122222111lim(2)()lim(2)lim(1)(2)(1)2xxxxfxxxxxxx,有112,12d,故瑕积分321d(1)(2)xxxx收敛;由333221lim()limlim1(1)(2)(1)(2)xxxxxfxxxxxxxx,有312,1d,故无穷积分31d(1)(2)xxxx收敛.综上,反常积分21d(1)(2)xxxx收敛.5.21d(0)(ln)pxpxx.解:1x是被积函数21()(ln)pfxxx(0p)的瑕点,分别考虑瑕积分2211d(ln)pxxx与无穷积分221d(ln)pxxx.(1)由21111lim(1)()lim1lnppxxxxfxxx,即有p,1d.于是,当1p时,瑕积分2211d(ln)pxxx发散;当01p时,瑕积分2211d(ln)pxxx收敛.(2)由22211lim()limlim0(ln)(ln)ppxxxxfxxxxx,有21,0d,于是,无穷积分221d(ln)pxxx收敛.综上,反常积分211d(ln)pxxx当01p时收敛,当1p时发散.66.1d(0)(ln)pxpxx.解:1x是被积函数1()(ln)pfxxx(0p)的瑕点,分别考虑瑕积分211d(ln)pxxx与无穷积分21d(ln)pxxx.(1)由1111lim(1)()lim1lnppxxxxfxxx,即有p,1d.于是,瑕积分211d(ln)pxxx当1p时发散;当01p时收敛.(2)2d(ln)pxxx2+1212ln(ln),1dln1,11(ln)(1)(ln2)(1)(ln),1pppxpxpxppxp,于是,无穷积分221d(ln)pxxx当1p时发散;当1p时收敛.综上,反常积分211d(ln)pxxx发散.六、证明:反常积分0sindxxx(1)当01时条件收敛(注:此时0不是被积函数的瑕点);(2)当12时绝对收敛;(3)当2时发散.(8分)证:(1)当01时,由1000,1sinsinlimlim1,1xxxxxxx,知0x不是被积函数sinxx的瑕点,所以0sindxxx为无穷积分.首先,证明无穷积分1sindxxx收敛.取1()fxx,()singxx,有1)1()fxx在区间[1,)单调减少且1lim0xx;2)1()sindcos1cos2AFAxxA,即有界.由狄利克雷判别法,无穷积分1sindxxx收敛,从而无穷积分0sindxxx收敛.其次,证明无穷积分1sindxxx发散.已知1x,有2sinsinxx,从而2sinsin1cos21cos2222xxxxxxxxx.7无穷积分1cos2d2xxx收敛,但无穷积分11d2xx发散,故无穷积分11cos2d2xxx发散,从而无穷积分0sindxxx发散.于是,当01时,无穷积分0sindxxx条件收敛.(2)(3)当1时,由1000sin1sinlim()limlimxxxxxfxxxx,知0x是被积函数xxxfsin)(的瑕点,所以要分别考虑无穷积分1sindxxx与瑕积分10sindxxx.由于sin1()xfxxx,已知无穷积分11dxx收敛(1),故当1时,无穷积分1sindxxx绝对收敛.在区间(0,1],被积函数sin()0xfxx,且有100sinsinlimlim1xxxxxxx,故当11,即12时,瑕积分130sindxxx绝对收敛;当11,即2时,瑕积分130sindxxx发散.于是,反常积分0sindxxx当12时绝对收敛,当2时发散.
本文标题:数学分析第十二章反常积分自测题解答
链接地址:https://www.777doc.com/doc-5647497 .html