您好,欢迎访问三七文档
1债务偿还RepayingLoans孟生旺中国人民大学统计学院主要内容分期偿还法(amortizationmethod)等额分期偿还变额分期偿还偿债基金法(sinkingfundmethod)等额偿债基金变额偿债基金抵押贷款3债务偿还的两种方法分期偿还法(amortizationmethod):借款人分期偿还贷款,在每次偿还的金额中,既包括当期应该支付的利息,也包括一部分本金。•包括:等额,变额偿债基金法(sinkingfundmethod):借款人在贷款期间分期偿还贷款利息,并要积累一笔偿债基金,用于贷款到期时一次性偿还贷款本金。•包括:等额,变额4一、等额分期偿还(levelinstallmentpayments)在等额分期偿还法中,需要解决的问题包括:(1)每次偿还的金额(loanpayments)是多少?(2)未偿还的本金余额(loanbalance,loanoutstanding,principaloutstanding)是多少?(3)在每次偿还的金额中,利息和本金分别是多少?51.每次偿还的金额贷款的本金是L0期限为n年年实际利率为i每年末等额偿还R则每次偿还的金额R可表示为(levelloanpayment)0|niLRa62.未偿还本金余额问题:假设贷款的本金是L0,期限为n年,年实际利率为i。每次偿还的金额R。确定t时刻尚未偿还的贷款。方法:将来法(prospectivemethod)过去法(retrospectivemethod)7方法一:将来法(prospectivemethod)把将来需要偿还的金额折算成计算日(k时)的现值,即得未偿还本金余额。Loanbalance=PV(futureloanpayments)第k期末,将来还需偿还(n–k)次,故未偿还本金余额为|=knkiLRa0||nkiniLaa8方法二:过去法(retrospectivemethod)从原始贷款本金的累积值中减去过去已付款项的累积值。Loanbalance=AV(loan)-AV(loanpaymentsmadetodate)原始贷款本金累积到时刻k的值为已经偿还的款项到时刻k的累积值等于,所以未偿还本金余额为0(1)kLi0(1)kkkiLLiRskiRs9命题:将来法与过去法等价。证明:0|(1)kkkiLLiRs||(1)knikiiRaRs1(1)1(1)nkkviRiii1nkvRi|nkiRa(过去法,第k年末)(将来法)10Example:Aloanisbeingrepaidwith20annualpaymentsof$1000each.Atthetimeofthefifthpayment,theborrowerwishestopayanextra$2000andthenrepaythebalanceover12yearswitharevisedannualpayment.Iftheeffectiverateofinterestis9%,findtheamountofrevisedannualpayment.11解:由将来法,5年后的余额为如借款人加付2000,则余额成为6060.70。假设修正付款额为X,价值方程为故515|10001000(8.0607)8060.70La12|6060.70Xa6060.70846.387.1607X12Exercise:Aloanisbeingrepaidwith10paymentsof$2000followedby10paymentsof$1000attheendofeachhalf-year.Ifthenominalrateofinterestconvertiblesemiannuallyis10%,findtheoutstandingloanbalanceimmediatelyafterfivepaymentshavebeenmadebyboththeprospectivemethodandtheretrospectivemethod.13解:实际利率为每半年5%;(1)由将来法,未偿还贷款余额为原始贷款为(2)由过去法,未偿还贷款余额为515|5|1000()1000(10.37974.3295)$14,709Laa020|10|1000()1000(12.46227.7217)$20184Laa555|20184(1.05)2000Ls20184(1.27628)2000(5.5256)14,709143、每期偿还的本金和利息基本原理:在分期付款中,首先偿还利息,然后偿还本金。设第k次的还款额为R,利息部分为Ik,本金部分为Pk,记Lk为第k次还款后的未偿还贷款余额,则有111(1)nkkknkiIiLiRaRv1nkkkPRIRvk的减函数k的增函数15时间k还款额利息Ik本金Pk未偿还贷款余额0|nia11|1nniiavnv1|nia2111|1nniiav1nv2|nia……………kt111|1nknkiiav1nkv|nkia……………n-1122|1iiav2v1|ian11|1iiavv0总和n|nina|nia递减几何递增将来法分期偿还表16本金和利息分离图0500010000150002000025000300003500014710131619222528时期金额利息本金例:30年贷款,贷款利率6%,每年还款30000元,本息图示如下:17例:一笔贷款的期限为2年,年实际利率为6%,每季度等额偿还一次,如果第一年末偿还的本金为2000元,试计算在第二年末应该偿还的本金。解:年实际利率为6%,故季度实际利率为i=(1+0.06)0.25–1=0.01467第四次偿还的本金:P4=Rv8–4+1=Rv5第八次偿还的本金:P8=Rv8–8+1=Rv所以P8/P4=v–4=(1+i)4,即P8=P4(1+i)4=2000(1.01467)4=2120(元)18Example:A$1000loanisbeingrepaidbypaymentsof$100attheendofeachquarterforaslongasnecessary,plusasmallerfinalpayment.Ifthenominalrateofinterestconvertiblequarterlyis16%,findtheamountofprincipleandinterestinthefourthpayment.19解:第三次还款后的未偿还贷款余额为从而有注意:此例无需算出最后一次付款的时期与金额。注:另一种解法(麻烦)333|0.041000(1.04)100812.70Ls40.04812.7032.51I410032.1567.49P0.04113.02392414100010013.0239210010067.49nnkkanPvPv20Exercise:Aloanisbeingamortizedbymeansoflevelmonthlypaymentsatanannualeffectiveinterestrateof8%.Theamountofprincipalrepaidinthe12-thpaymentis1000andtheamountofprincipalrepaidinthet-thpaymentis3700.Calculatet.211/12(18%)10.006434j月实际利率为第12次付款中的本金为(R为每次的付款额,n为付款总次数)第t次付款中的本金为解上述方程组即得t=216(121)1000(10.006434)nR+(1)3700(10.006434)ntR+22Example:Aborrows$10,000fromBandagreestorepayitwithequalquarterlyinstallmentofprincipleandinterestat8%,convertiblequarterlyoversixyears.AttheendoftwoyearsBsellstherighttoreceivefuturepaymentstoCataprice,whichproducesayieldrateof10%convertiblequarterlyforC.Findthetotalamountofinterestreceived:(1)byC,and(2)byB.23解:六年中A的每次还款额为C的利息C的总收入:16(528.71)=8459.36C的买价(支出):从而C的利息为:8459.366902.31=1557.0524|0.0210,00010,000528.7118.9139a16|0.025528.716902.31a24B的利息B在前2年的总收入为8×528.71=4229.68(A偿还的金额)6902.31(从C获得的资金,卖价)B在期初借出的资金为10000元故B的利息收入为4229.68+6902.30-10000=1131.9925注:A在整个贷款期间所付的总利息为(24)(528.71)10000=2689.04等于B和C收到的利息额之和,即1557.05+1131.99=2689.04C的利息B的利息26Exercise:Anamountisinvestedatanannualeffectiverateofinterestiwhichisjustsufficienttopay1attheendofeachyearfornyears.Inthefirstyearthefundactuallyearnsrateiand1ispaidattheendofthefirstyear.However,inthesecondyearthefundearnsratej,whereji.Findtherevisedpaymentwhichcouldbemadeattheendsofyear2throughn;(1)Assumingtherateearnedrevertsbacktoiagainafterthisoneyear;(2)Assumingtherateearnedremainsjfortherestofn-yearperiod.27解:,而第一年底的未偿还贷款余额。设从第二年末开始的付款为X,则(1)一方面有另一方面,L2等于从第三年开始的所有还款的现值之和,即0|niLa11|niLa21|niIja21|niPXja21|1|1|()(1)ninniiLajXXjaa22|niLXa第2年末的利息第2年末的本金第2年末的贷款余额未来法计算的贷款余额28从而有:2|1|(1)niniXajaX2|1|(1)(1)niniXaja1|1|(1)niniXaja1|1|(1)(1)niniXiaja111jXi29(2)类似地,由L2的两种算法可得即有2|1|(1)njniYajaY2|1|(1)(1)njniYaja1|1|(1)njniYaja1|1|(1)(1)njniYjaja1|1|ninjaYa此式大于1还是小于1?与X比较哪个大?30二、等额偿债基金含义:借款人分期偿还贷款利息(servicepaymentoftheloan,generallyequalstheamountofinterestdue),同时积累一笔偿债基金,用于贷款到期时一次性清偿贷款本金。例:假设某人从银行获得10000元的贷款,期限为5年,年利率为6%。双方约定:(1)
本文标题:(5)债务偿还
链接地址:https://www.777doc.com/doc-5657882 .html