您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 简单的轴对称图形最新版
简单的轴对称图形1、什么样的图形叫做轴对称图形?答:把一个图形沿着某条直线对折,如果对折的两部分是完全重合的,我们就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。复习提问:复习提问:2、下列图形哪些是轴对称图形?引入问题:做一做:试着在纸上画出线段AB及它的中点O,再过O点画出与AB垂直的直线CD,沿直线CD将纸对折。看看线段OA与OB是否重合?线段是不是轴对称图形?ABOCD.如图,直线CD是线段AB的对称轴,定义:垂直并且平分一条线段的直线称为这条线段的垂直平分线,也叫中垂线。线段是轴对称图形思考:线段的对称轴是什么呢?结论:线段的对称轴是它的垂直平分线它垂直并且平分AB如图,直线CD垂直平分线段AB,在直线CD上任取一点M,连接MA与MB,想一想MA与MB关系如何?ABCDOMN性质:线段的垂直平分线上的点到这条线段两个端点的距离相等探索:发现:MA=MB线段的垂直平分线有什么特性吗?想一想:若在CD上另取点N,那么NA与NB是否也相等?NA=NB性质:线段的垂直平分线上的点到这条线段两个端点的距离相等ABCDM几何表达:∵CD垂直平分AB,M在CD上∴MA=MB1、如图(1)在三角形ABC中,AD垂直平分边BC,AB=5,那么AC=____ABCD2、在图(2)中DE是BC的中垂线则图中相等的线段有_______________________(1)ABCDE(2)5练习:BE=CE、BD=CD例1:△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D.BE=6,求△BCE的周长ABCDE巧解周长:动动手(三)在纸上作出一个角和它的平分线.猜测:角是轴对称图形吗?如果是,它的对称轴是哪条直线?(四)作一个角的平分线,并在平分线上任取一点,作出该点到两边的距离;猜想:这两个距离相等吗?运动该点,观察这两个距离还相等吗?如果相等,你能说出理由吗?请用自己的语言叙述该结论。角平分线的性质:角平分线上的点到角两边的距离相等.实践应用:例2.(2005·四川自贡)如图,内宜高速公路AB和自雅路AC在我市交于点A,在∠BAC内部有五宝和正紫两个镇D、E,若要修一个大型农贸市场F,使F到AB、AC的距离相等,且使FD=FE,作出市场F的位置。··CABED练一练:一、填空题:1.到线段的两个端点距离相等的点有个.2.平分一条已知线段的直线有条;垂直平分一条已知线段的直线有条.3.一条已知线段的对称轴有条.二、判断题:4.线段的垂直平分线上存在到这条线段两端点距离不相等的点()5.有一公共端点的两条相等线段的图形是轴对称图形()6.角是轴对称图形,对称轴是角平分线()1、如图,△ABC中BC垂直平分线交AB、BC于点E、D且EB=6△EBC的周长为22则BC长为_____ABCDE2、在上图中△ABC中BC的中垂线交AB于点E交BC于点D,△AEC的周长是18cm则AB+AC=___练习:10183、在图(2)中MN是DE与BC的中垂线,BD与CE相等吗?为什么?MNBCDE练习:解:∵MN是DE的垂直平分线(已知)∴MD=ME(线段垂直平分线的性质)又∵MN是BC的垂直平分线(已知)∴MB=MC(线段垂直平分线的性质)∴MB-MD=MC-ME(等式的性质)即:BD=CE作业1.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地点有().A.1处B.2处C.3处D.4处2.如图,已知AB=AC,DE垂直平分线交AB于点D,交AC于点E,若△ABC的周长为28,BC=8,求△BCE的周长.3.利用画板探索:△ABC三个角的平分线的位置有什么关系?l1l3l2EDCBA1234在△ABC中用刻度尺和量角器画出线段AB、BC、CA的垂直平分线,看看三条垂直平分线的位置有什么关系ABC∟P试一试:解答:三条垂直平分线交于一点思考:若设交点为P,连接PA、PB、PC,那么PA、PB、PC有什么关系?结论:三角形三条边垂直平分线的交点到三个顶点的距离相等。小结:1、线段是轴对称图形,它的对称轴是它的垂直平分线2、线段的垂直平分线的定义3、线段的垂直平分线的性质4、三角形三条边垂直平分线的交点到三个顶点的距离相等。作业:一课三练相关练习做完再见思考:在△ABC中DE是AC的垂直平分线AE=3cm,△ABD的周长为13cm,求△ABC的周长?ABCDE现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐,可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式,在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防,生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方向;我们习惯了飞翔,却成了无脚的鸟。年轻时我们并不了解自己,不知道自己需要什么。不知道什么才是自己最想要的,什么才是最适合自己的,自己又是怎么样的一个人。”时光叠加,沧桑有痕,终究懂得,漫漫人生路,得失爱恨别离,不过是生命的常态。原来,人生最曼妙的风景,就是那颗没被俗世河流污染的初心。大千世界,有很多的东西可以去热爱,或许一株风中摇曳的小草,一朵迎风招展的小花,一条弯弯曲曲的小河,都足够让我们触摸迷失的初心。紫陌红尘,芸芸众生,皆是过客。若时光允许,我愿意一生柔软,爱了樱桃,爱芭蕉,静守于轮回的渡口,揣一颗云水禅心,将寂寞坐断,将孤独守成一帧最美的山水画卷。一直渴盼着,与心悦的人相守于古朴的小院,守着老旧的光阴,只闻花香,不谈悲喜,读书喝茶,不争朝夕。阳光暖一点,再暖一点,日子慢一些,再慢一些,从容而优雅地老去。浮生荡荡,阳春白雪,触目横斜千万朵,赏心不过两三枝;任凭弱水三千,只取一瓢饮。有梦的季节,有爱的润泽,走过的日子,都会成为笔尖温润如玉的诗篇。相信越是走到最后,剩下的唯有一颗向真向善向美的初心。似水流年,如花美眷,春潮带雨晚来急,野渡无人舟自横朝花夕拾,当回望过往,你是此生无憾,还是满心懊悔呢?随着芳华的流逝,我们终究会明白:任何的财富都比不上精神上的愉悦,任何的快感都不及对初心的执着。愿你不趋炎附势,不阿谀奉迎,不苟且偷生,不虚掷有限的年华,活出属于自己的风采,活在每一个当下,不忘初心,不负今生曾经有人说,成大事者必经以下三种境界:“昨夜西风凋碧树,独上高楼,望尽天涯路”,此第一境界也;“衣带渐宽终不悔,为伊消得人憔悴”,此第二境界也;“众里寻他千百度,蓦然回首,那人却在灯火阑珊处”,此第三境界也。我想说的是:事无大小,只要你还在坚持,成功的曙光终会毫不吝啬地照向你有这样一个小故事。1987年,她14岁,在湖南益阳的一个小镇卖茶,1毛钱一杯。因为她的茶杯比别人大一号,所以卖得最快,那时,她总是快乐地忙碌着。她17岁,她把卖茶的摊点搬到了益阳市,并且改卖当地特有的“擂茶”。擂茶制作比较麻烦,但能卖个好价钱,她也总是忙忙碌碌。她20岁,仍在卖茶,不过卖茶的地点又变了,在省城长沙,店面也由摊点变成了小店。客人进门后,必能品尝到热乎乎的香茶,在尽情享用后,他们或多或少会掏钱再带上一两袋茶叶。1997年,她24岁,长达十年的光阴,她始终在茶叶与茶水间滚打。这时,她已经拥有37家茶庄,遍布于长沙、西安、深圳、上海等地。福建安溪、浙江杭州的茶商们一提起她的名字莫不竖起大拇指。她的最大梦想实现了。“在慢慢习惯于喝咖啡的潮流下,也有洋溢着茶叶清香的茶庄出现,那就是我开的……”说这句话时她已经把茶庄开到了故事虽短,内涵颇深,一件事,只有始终坚韧不拔地去做,无谓任何艰难险阻,不左右摇摆,不顾左右而言它,才能披荆斩棘,在一千次的跌倒后又一千零一次地站起来。事实上,我们在做一件事的时候,总是不自觉地放大困难,使得我们产生畏惧之心,没有了乘风破浪的豪情与气魄。困难并不可怕,可怕的是我们没有直面困难的勇气。面对着被自己放大了的困难,我们需要有的就是坚持的精神,或许只是一瞬间的坚持我们就挖掘了自身潜能,造就了一个全新的自己。有时做一件事就像是跑400米,当你已经跑过300米,面对着那已出现在眼前的终点线时,你实际上并不需要多想,要做的就是再加把劲,冲过去,得到真正属于自己的成绩。坚持是一种信念,让你有不怕困难、奋勇向前的勇气;让你有乘风破浪、直击沧海的豪情;让你有不达目的誓不罢休的毅力。所以我们既然选择了,就一定要走下去,不要在有限的时间里,蹉跎无限的光阴。只有如此,到暮年之时,细细回想起来,才不会有年华虚度、韶华易逝的感慨。
本文标题:简单的轴对称图形最新版
链接地址:https://www.777doc.com/doc-5695094 .html