您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 一元一次不等式和一元一次不等式组讲义
一元一次不等式和一元一次不等式组知识点一:不等式1、不等式的基本性质性质1:不等式的两边同时加上(或减去)同一个数或同一个整式,不等号方向不改变。若ab,则a+cb+c(a-cb-c)。性质2:不等式的两边同时乘以(或除以)同一个正数,不等号方向不变。若ab且c0,则acbc。性质3:不等式的两边同时乘以(或除以)同一个负数,不等号方向改变。若ab且c0,则acbc。2、同解不等式:如果几个不等式的解集相同,那么这几个不等式称为同解不等式。知识点二:一元一次不等式1、定义:像276xx,39x等只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,系数不为0,这样的不等式叫做一元一次不等式。2、一元一次不等式的标准形式:0axb(0a)或0axb(0a)。3、一元一次不等式组的解集确定:若ab则(1)当bxax时,则ax,即“大大取大”(2)当bxax时,则bx,即“小小取小”(3)当bxax时,则axb,即“大小小大取中间”(4)当bxax时,则无解,即“大大小小取不了”知识点三:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。如:,。要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。知识点四:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点五:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。知识点六:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。注意积累利用一元一次不等式或不等式组解决实际问题的经验。例题分析:例1、解不等式组,并把它的解集在数轴上表示出来。巩固练习1、不等式组2.01xxx的解集是().1.0.01.21AxBxCxDx2、若mn,则不等式组12xmxn的解集是3、若0mn,则222xmxnxn的解集为.例2、若关于的不等式组的解集为,则的取值范围是什么?巩固练习:1、若不等式组1mx1x59x的解集为2x,则m的取值范围是()A.2mB.2mC.1mD.1m2、3、如果不等式组mxxx)2(312的解集是x<2,那么m的取值范围是()A、m=2B、m>2C、m<2D、m≥24、如果不等式组2223xaxb≥的解集是01x≤,那么ab的值为.5、关于x的不等式组12xmxm的解集是1x,则m=.6.若关于x的不等式组61540xxxm的解集为4x,则m的取值范围是.7、若关于x的不等式组mxx2的解集是2x,则m的取值范围是.8.不等式组632axax的解集是32ax,则a的取值.9、已知不等式组3212bxax的解集为11x,则)1)(1(ba的值等于多少?例3、(1)求不等式组的整数解。巩固练习:1、已知关于x的不等式组0521xax≥,只有四个整数解,则实数a的取值范围是____2、关于x的不等式组x+152>x-32x+23<x+a只有4个整数解,则a的取值范围是()A.-5≤a≤-143B.-5≤a<-143C.-5<a≤-143D.-5<a<-1433、已知关于x的不等式组0321xax有五个整数解,这五个整数是____________,a的取值范围是________________。4、已知关于x的不等式组0x230ax>>的整数解共有6个,则a的取值范围是。例4、已知关于x,y的方程组34,72myxmyx的解为正数,求m的取值范围.1、如果关于x、y的方程组322xyxya的解是负数,则a的取值范围是()A.-4a5B.a5C.a-4D.无解2、.已知方程组2420xkyxy有正数解,则k的取值范围是.3、、已知关于x、y的方程组342122myxmyx的解是一对正数。(1)试确定m的取值范围;(2)化简|2||13|mm4、、已知关于x,y的方程组134,123pyxpyx的解满足x>y,求p的取值范围5、、已知方程②①m1y2xm31yx2满足0yx,则()A.1mB.1mC.1mD.1m6、、已知122,42kyxkyx中的x,y满足0<y-x<1,求k的取值范围.例5、若不等式组无解,求a的取值范围.巩固练习:1、若不等式组0,122xaxx≥有解,则a的取值范围是()A.1aB.1a≥C.1a≤D.1a2、若不等式组530,0xxm≥≥有实数解,则实数m的取值范围是()A.m≤53B.m<53C.m>53D.m≥533、若不等式组01x0xa无解,则a的取值范围是()A.1aB.1aC.1aD.1a4.若不等式组2113xax无解,则a的取值范围是.5.已知关于x的不等式组21xxxa,,无解,则a的取值范围是()A.1a≤-B.12aC.a≥0D.2a≤一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。一.分配问题:1.把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗?2.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个?有鸡多少只?5.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2.用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。B型抽水机比A型抽水机每分钟约多抽多少吨水?3.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?4.某同学要在4小时内,从甲地赶到相距15公里的乙地,他从甲地出发后,以每小时3公里的速度走了1小时,以后至少平均每小时要走多少公里,才能按计划到达乙地?四价格问题1商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?2.水果店进了某中水果1t,进价是7元/kg。售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克1.5元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本?4.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。问刻录这批电脑光盘,该校如何选择,才能使费用较少?5.某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?6.学校图书馆准备购买定价分别为8元和14元的杂志和小说共80本,计划用钱在750元到850元之间(包括750元和850元),那么14元一本的小说最少可以买多少本?五其他问题1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两位数2.一次知识竞赛共有15道题。竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题?3.某公司需刻录一批光盘(总数不超过100张),若请专业公司刻录,每张需10元(包括空白光盘费);若公司自刻,除设备租用费200元以外,每张还需成本5元(空白光盘费)。问刻录这批光盘,是请专家公司刻录费用省,还是自刻费用省?4.考试共有25道选择题,做对一题得4分,做错一题减2分,不做得0分,若小明想确保考试成绩在60分以上,那么,他至少做对X题,应满足的不等式是什么?5.有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个?六方案选择与设计1.红星公司要招聘A、B两个工种的工人150人,A、B工种的工人的月工资分别为600和1000元,
本文标题:一元一次不等式和一元一次不等式组讲义
链接地址:https://www.777doc.com/doc-5700589 .html