您好,欢迎访问三七文档
UNIVERSITYOFJINAN力法计算举例2m4m2m2m2mPEI=常数解:1)两次超静定结构2)选取基本体系X1X2P力法计算举例例1.计算下列超静定刚架,EI=常数。UNIVERSITYOFJINAN力法计算举例3)作图图,图,21MMMPPMPX1=111MX2=1112MUNIVERSITYOFJINAN力法计算举例01P,EIPLPLLEIP1621421122EILLEI332121111,EIL62112,EIL225)解力法方程0022221211212111PPXXXX8831PLX4432PLX4)求柔度系数UNIVERSITYOFJINAN力法计算举例5)作出弯矩图3PL/8819PL/88UNIVERSITYOFJINAN力法计算举例例1.计算下列超静定刚架,EI=常数。2kN/m4m4m4m3m解:1)超静定数次-2次2)选取基本体系X2X12kN/m把顶铰截开,2个约束,2次超静定结构UNIVERSITYOFJINAN力法计算举例3)作图图、图与21MMMPPM16X1=11M37X2=12M4EI3662114)求柔度系数02112EI354422EIP3801EIP34623)作UNIVERSITYOFJINAN力法计算举例5)解力法方程0022221211212111PPXXXXkNX722.11kNX908.126)叠加法作出弯矩图2211XMXMMMPPM16X1=11M37X2=12M43.202.473.694.42UNIVERSITYOFJINAN力法计算举例例题2计算下列超静定刚架,EI=常数。20kN/m6m6m6m解:1)超静定次数2)选取基本体系2次超静定结构X1X2EDACBUNIVERSITYOFJINAN力法计算举例图图、图与21MMMP1080360PM6X1=161MX2=11262MEDACB3)作UNIVERSITYOFJINAN力法计算举例10803606X1=161MX2=11262M4)求柔度系数EI21611EI2162112EI43222EIp172801EIP334802EDACBPMUNIVERSITYOFJINAN力法计算举例5)解力法方程0022221211212111PPXXXXkNX51kNX7526)叠加法作弯矩图2211XMXMMMP1080360PMX1=161M6X2=11262M1209030150UNIVERSITYOFJINAN力法计算举例1209030150M(KNm)452025575V(KN)+++-2555N(KN)+-+UNIVERSITYOFJINAN力法计算举例例题3力法计算桁架结构2a2aaPP解:1)超静定次数1次超静定结构2)选取基本结构XPP3)作NP图,图N0PP2PNaUNIVERSITYOFJINAN力法计算举例4)求柔度系数EAa22311EAPaP22210111PX5)力法方程解得:X=1.172P6)依叠加法作轴力图XNNNP0.172P-0.586P0.414P-0.829P0PP2PN2/2212/2NUNIVERSITYOFJINAN力法计算举例例题4力法计算桁架结构中1,2杆的内力。2P2a2a2a2aaa2aUNIVERSITYOFJINAN力法计算举例解:1)几何构造分析,确定超静定次数2)选取基本体系2PUNIVERSITYOFJINAN力法计算举例图N3)作NP图,PP4P/34P/33/24P6/5P6/55PP/36/5P6/5P0-2P对称PN2PUNIVERSITYOFJINAN力法计算举例001/31/303/53/53/26/56/51/3对称NUNIVERSITYOFJINAN力法计算举例4)求柔度系数EAaEAlNN248.1211EAPaEAlNNPP684.1115)解力法方程0111PXPX954.06)叠加求指定杆内力PNNNP954.0111PNNNP436.1222力法基本体系有多种选择,但必须是几何不变体系。同时应尽量使较多的付系数、自由项为零或便于计算。。↓↓↓↓↓↓↓↓2kN/m↓↓↓↓↓↓↓↓2kN/mX1X2X1=111MX2=12M1↓↓↓↓↓↓↓↓2kN/mPMql2/8图示连续梁,各跨的刚度为EI,跨度为a.解:1)确定超静定次数2)选取基本体系图图、图与21MMMP3)作PM1M2MX1=111MX2=12M1↓↓↓↓↓↓↓↓2kN/mPMql2/8223113223221EIaaaaEIEIaaaaEI632132112EIqaqaaEIP24218321321032602463221321XEIaXEIaEIqaXEIaXEIa60,152221qaXqaXPiiMXMM4)求柔度系数5)解力法方程02PPM1M2M7)作M图↓↓↓↓↓↓↓↓2kN/m152qa602qa3Pl/165Pl/32M3Pl/165Pl/32M3Pl/165Pl/32MΔ1=δ11x1+Δ1p=0X1=1l1MX1=1EIl3δ11=11M211MEIl33EIl43δ11=EIPl/2l/2X12)PΔ1=δ11x1+Δ1p=0Δ1=δ11x1+Δ1p=01)X1P3)PX1X1=1PPl/2MPPPl/4MPPPl/2MPEIPlP24521EIPlP1621EIPlP485313251111PlXP16-31111PlXP1651111PXPδ11=同一结构选不同的基本体系进行计算,则:1)典型方程形式相同;但力法方程代表的物理含义不同;方程中的系数和自由项不同。2)最后弯矩图相同;但计算过程的简繁程度不同。因此,应尽量选取便于计算的静定结构为基本体系。UNIVERSITYOFJINAN力法计算举例例题5用力法计算下列组合结构。已知,梁AB:EI=,EA1=CE、DF杆:EA2=AE、EF、BF杆:EA3=2410989.1mkNkN610484.2kN51095.4kN51046.2ABEF2m2m2m2m1.5m100kNUNIVERSITYOFJINAN力法计算举例解:1)1次超静定结构2)基本体系X100kN3)作MP,NP图200NP=04)做图图,NM-0.751.25X=1UNIVERSITYOFJINAN力法计算举例dxEIMEAlN221125.175.075.012EA225.125.125.14111223EA=+5.125.15.1325.12212EI+=m510659.405)求柔度系数200NP=0-0.751.25X=1UNIVERSITYOFJINAN力法计算举例dxEIMEAlN2211=510659.40dxEIMMEALNNPPP1m5102.27655)求柔度系数200NP=0-0.751.25X=15.122200100100325.12212EI=UNIVERSITYOFJINAN力法计算举例1026885-51986)解力法方程0111PXkNX0.68XMMMPXNNNP7)依200NP=0-0.751.25X=1UNIVERSITYOFJINAN力法计算举例例题7铰接排架的计算已知,I2=5I1吊车梁偏心力产生的弯矩ME=20kNm,MH=60kNmI2I2I1I1I1EAEA3m7mMEMHUNIVERSITYOFJINAN力法计算举例解:1)2次超静定结构2)基本体系X1X2MEMH2060MP图3)作MP图UNIVERSITYOFJINAN力法计算举例4)作图21,MMX1=110101MX2=1772M5)求柔度系数UNIVERSITYOFJINAN力法计算举例5)求柔度系数2117.738EI222686EI221128.187EI213640EIP221470EIP6)解力法方程0022221211212111PPXXXXkNX637.41kNX866.02UNIVERSITYOFJINAN力法计算举例7)作M图2211XMXMMMP6.0913.926.47.576.0646.1UNIVERSITYOFJINAN力法计算举例例题8具有弹簧支座结构的力法,已知,LEIKM12EI=常数LLLPKMEIEI2)基本体系PX1X2解:1)2次超静定结构UNIVERSITYOFJINAN力法计算举例2)基本体系PX1X23)作MP图,图图和21MMPPLPMX1=12L1MX2=1L2MUNIVERSITYOFJINAN力法计算举例4)求柔度系数EILEILLLLLLEI3113122223222211EIL1229322EILKLLLLLEIM61322221132112EIPLKLPLLPLLEIMp312265211EIPLP12732PPLPMX1=12L1MX2=1L2MUNIVERSITYOFJINAN力法计算举例5)解力法方程0022221211212111PPXXXXPX120371PX20126)依2211XMXMMMPPL/3PL/2043PL/120PPPLPMX1=12L1MX2=1L2MUNIVERSITYOFJINAN力法计算举例例题8具有无限刚性杆结构的力法,36LEIK6m6mKEAEIEI30kN解:1)1次超静定结构2)选取基本体系X30kNUNIVERSITYOFJINAN力法计算举例解:1)1次超静定结构2)选取基本体系X30kN3)做MP图,图M18030kNPM63X=11/2MUNIVERSITYOFJINAN力法计算举例4)计算柔度系数EIEIP216063218062111EIKEIEI11721211233236211632662111118030kNPM63X=11/2MUNIVERSITYOFJINAN力法计算举例5)解力法方程0111PX46.18X6)作M图XMMMP55.3818030kNPM63X=11/2MUNIVERSITYOFJINAN力法计算举例llP例题力法计算桁架结构X1P基本体系1确定超静定次数2选取基本体系UNIVERSITYOFJINAN力法计算举例X1P基本体系PP0000P-2NPX1=11111122N13作NP图,N1图,求出系数δ11=2))21(4EAl)2(22××lEA411(××EAlEA21lNΔ1P=∑EAPlPEAlPEAlEAlNNP)221()]2)(2[(2)1(1UNIVERSITYOFJINAN力法计算举例llPδ11X1+Δ1P=0P396.0P244)221(X1-0.396P-0.396PPNXNN11PP0000P-2NPX1=11111122N14写力法方程5依叠加法求轴力。
本文标题:8力法的计算举例
链接地址:https://www.777doc.com/doc-5701984 .html