您好,欢迎访问三七文档
中学数学实验教材摘要:由算术到代数是第一个重大转折.关键在于...全套教材共分六册,第一册是代数,在...除在代数课中加强理论和论证因素以外,在...(三)教学结构应当是完整性与发展性的...关键词:代数,性类别:专题技术来源:牛档搜索(Niudown.COM)本文系牛档搜索(Niudown.COM)根据用户的指令自动搜索的结果,文中内涉及到的资料均来自互联网,用于学习交流经验,作品其著作权归原作者所有。不代表牛档搜索(Niudown.COM)赞成本文的内容或立场,牛档搜索(Niudown.COM)不对其付相应的法律责任!《中学数学实验教材》网络转载《中学数学实验教材》的编写、实验与研究为了进一步改革中学数学教育,教育部委托北京师大牵头,会同数学所、人教社、北京师院、景山学校等单位参照美国加州大学伯克利分校项武义教授的设想从1978年11月开始编写并实验研究另一套中学数学教材——《中学数学实验教材》(以下简称《实验教材》),这套教材不在编写、实验与研究之中,现在仅对教材的内容结构、实验情况作一概述。一、教材的指导思想和体系结构《实验教材》的指导思想是:“精简实用,返朴归真,顺理成章,深入浅出。”“精简实用,返朴归真”是选取内容的原则。“精简实用”是个基本的指导思想,它恰当地表现了理论和实际的正确关系。由实际到理论,就是由繁到简,把实际中多样的事物、现象经过分析、综合,归纳出简单而又具有普遍性的道理。而只有精而简的理论才能用来“以简驭繁”。所以“精简实用”在科学上的意义就是要求真正具有普遍性、简明扼要的理论。要做到精简,必须抓住重点。教材中,普遍实用的基础部分,那些有普遍意义的通性、通法就是重点。数学是量科学。基础数学的对象是数、空间、函数,相应的是代数、几何、分析三个学科。这三者是各成体系但又密切联系的。中学数学课应当是这三科的恰当配合的整体,中学数学课要从这三科中精选内容。代数的重要内容有四个:①数系:有理数系、实数系、复数系,在中学阶段重点的是实数系。最普遍有用的是数系的运算律(“数系通性”)。代数方法就是有效运用运算律谋求问题的统一解决;②解代数方程;解低次方程主要用运算律,配方法,消去注。解高次方程主要是运用实数系的完备性,采用函数观点去解,要用到中间值定理、史斗姆定理;③多项式运算:主要是多项式的加、减、乘和单元多项式除法,综合除法,余式定理,辗转相除法;④待定系数法;通过它把其它的问题化为解代数方程的问题。几何的重要内容是教导学生研习演绎法,要点在于让学生逐步体会空间基本性质的本质与用法。例如等腰三角形定理的本质在于平面的轴对称,而它的基本用法则是讨论直线形的边角关系时,能够把边等转换为角等,角等转换为边等。平行四边形定理是欧氏平面具有平移的具体表现;相似三角形定理是相似形基本定理,而相似变换是欧氏平面上常用的特性;而勾股定理则是把角边关系数量化的基础。所以这三大定理可以说是欧氏平面几何的三大支柱。它们也就是把空间结构全面代数化的理论基础。用向量把几何学全面代数化,讲向量几何,解析几何及其原理,这些就是几何课的重点。分析的重要内容除函数、极限、连续等分析学的基本概念之外,变率是要紧的概念,分析中最基本的方法是逼近法。明确这些主要内容之后,选材就能做到精简,教学也也便于抓住重点。当然有些重要的困难的概念和方法的学习要有一个过程。不能一次完成。如函数概念、逼近法,这套教材采取提前渗透、逐步深化、精确化的处理措施,遵循认识规律,逐步解决。“返朴归真”就是着重于教学生以基础数学的本质而不拘泥于抽象的形式。任何理论,它的本质要比它的形式更有活力,也更平易近人。比如初等代数最基本的思想、最重要的本质就是有那么一些非常简单的数的运算律,例如交换律、结合律、分配律等。这种运算律是普遍的、简单的,但是它也就是整个代数学的根本所在,所以这个原理是本质,把这个本质形式化了,也就是多项式的运算和理论。传统的代数教学从多项式的形式理论开始,学生不解其义,感到枯燥。《实验教材》反璞归真,先讲代数学的基本原理就是灵活运用运算律,用以解决一次方程的实际问题,学生自然地觉得应该有一个多项式理论,然后再讲多项式,这样学生易于理解多项式的来源来本质。这就是一个“反璞归真“的实际例子。这种例子很多,《实验教材》力图在很多地方体现这个想法。“顺理成章,深入浅出“是处理教材的原则。从历史发展程序和认识的规律出发,自然地处理教材,力求顺理成章、深入浅出,注意提前渗透后面的重要概念和思想,为后面的学习预先作准备,使学生易于接受。同时分析、综合、推理三咱方法,使学生真正掌握数学的精神实质和思想方法,培养学生的思考能力。数学的历史发展经历过若干重要转折。学生的认识过程和数学的历史发燕尾服过程有一致性,教材和教学也要着力采取措施引导学生合乎规律地实现那些重大转折,使学生的数学学习由一个高度发展到另一个新的高度,这套教材突出了四个转折。由算术到代数是第一个重大转折。关键在于灵活运用运算律。整个代数学的基本主题就是以通性求通解。从算术进化到代数,关键性的突破点就是发现了如何运用数系通性去解简单的代数议程这个原理。多项式的产生则是后来进一步把上述解方程的原理加以形式化的结果。实现这个转折,重要的是要向学生讲清代数的基本精神是灵活运用运算律谋求问题的统一解法。由实验几何到论证几何是第二个重大转折。要对空间的基本概念与基本性质加以系统的观察分析与实验,建立“空间通性”的一个明确体系,达到“探源、奠基与启蒙”三个教学目的,然后引进集合语并借助集合和描述集合的特征性质之间的关联来说明性质之间的逻辑关系,即以集合作工具,讲清一些基本逻辑关系、推理格式再转入欧几里得推理几何、第三个转折是从定性几何到定量几何,即从综合几何到解析几何。要对几何问题谋求统一解法,出路在代数化。用代数工具去研究几何问题是数学史上一个创造性的成功,但是更有效、更自然的做法是把几何全面地代数化,使几何从定性研究发展到定量研究,首先要把一个基本的代数化,位移是基本的几何量,它包括距离和方向两个要素,把这两点加以抽象,就得到向量的概念然后运用欧氏空间的特有的平移、相似与勾股定理等基本性质引进向量的加法、倍积与内积这三种向量运算、这样就把空间的结构转化为向量和向量运算这种代数体系。因而空间的基本性质也就转化成向量运算的运算律。例如平行四边形定理的代数形式就是倍积的分配律,广义勾股定理则可以转化成为内积的分配律,总之,几何学中的一套空间通性就可以转换成向量的加法、倍积和内积所满足的一套简单、好用的运算律,换句话说,向量的运算律也就是代数化的几何公理,这样就把空间的研讨彻底地推进到有效能算的水平,实现定性几何到定量几何的转折,向量是这个转折的枢纽,要着力讲好。代数与几何结合,产生了解析几何。解析几何也在微积分与代数、几何间建立了桥梁,所以解析几何是整个基础数学的关键。第四个转折是从常量到数学到变量数学。常量数学是研究变量数学的基础,但是常量数学本身,还不足以解决日常生活中遇到的各种变量问题,换句话说,常用的也是最有用的数学其实是变量数学,所以把中学的数学教育提高到包括初等微积分的水平,实在有其实用上的必要性。当然,由于师资和学生条件不够,全国普遍在中学开设微积分课可能有困难,但是在条件具备的重点中学开设却是可能的。从常量数学到变量数学,在概念和在方法论方面都有相当大幅度的飞跃,需要早作准备。初中二年级已有三角函数的初步概念,初三正式研究各种函数,到高一、高二的代数与解析几何课中,就逐步地讨论到连续性、实数、切线等概念。数列、逼近的思想也早有渗透,到高三进一步突出逼近法研究极限、连续、微分、积分等变量数学问题。《实验教材》在微积分的讲法上的一个主要特点,就是着重于讲逼近法,以它作为贯穿全局的基本方法。逼近与极限是密切相关的两个概念。但是观点不同,概念的层次也不同。例如,先有一个数,再去求它的比较简单的近似值的数列{n},这是逼近的观点;反之,若先有给定的一个数列{n},然后再来看一看,是否恰好有一个数,被上述数列所无限逼近,这就是极限观点。在分析学的研究中,在下定义或讨论存在性是我们所采取的是极限观点,而通常在解决问题或运用唯一性的场合,我们所采用的是逼近观点。大体上来说,在微积分的基本定义中我们用极限来得到简化;而在实际计算中我们用逼近来达到以简驭繁的目的。所以逼近要比极限来得初等常用,这也就是在讲微积分是突出逼近法的好处。这样,上述这种课程设计,既遵循历史发展的规律,又突出了几个转折关头,缩短了认识过程,有利于学生掌握数学思想发展的脉络,提高数学教学的思想性。根据这些指导思想,这套教材基本上采取代数、几何、分析分科,初中、高螺旋上升的安排体系,教学可按初一下,初二代数、几何双科并进,初三学函数,高一、高二代数(包括概率)、几何双科并进,高三学微积分的程序来安排。全套教材共分六册,第一册是代数,在总结小学所学自然数、小数、分数的基础上,明确提出运算律把数系扩充到有理数和实数,充分运用运算律解一元一次、二次方程、多元一次方程组。然后进一步系统化,引进多项式运算、学习综合除法、辗转相除,到余式定下、因式定理,然后学分式、根式,最后突出总结换元、配方、待定系数法等几个代数的通法。第二册是身体。由直观几何形象分析归纳出几何基本概念和基本性质,通过集合术语、简易逻辑转入欧氏推理几何,处理直线形、圆、基本轨迹与作图、三角比与解三角方程等基本内容,第三册是函数。代数与几何结合引入坐标,研究一次、二次多项式函数、三解函数、指数、对数,并系统学习一元一次、二次、高次不等式和解不等式。第四册是高中代数。把数系扩充到复数,进一步加强多项式论、议程式论,讲多元一次议程组理论(线性代数初步),多项式的基础理论,余式定理,可除性质和史斗姆定理,最后学排列组合,二项式定理,概率初步。第五册是高中几何。先讲立体几何初步,主要讲空间元素的位置关系,柱、锥、台、球等几何体的概念、性质与度量。然后引进向量,用向量处理平面和立体几何问题,再引进坐标处理直线、圆、圆锥曲线,坐标交换与二次曲线讨论,极坐标参数方程,最后用向量、坐标处理空间直线、平面与球(包括向量外积)。第六册是微积分初步。突出逼近法,讲实数完备性、函数、极限、连续、变率与微分,求和与积分。二、从实验中得到的启示《实验教材》从1979年秋开始实验,首批实验班已经由初一学到了高三,实验规模逐年有所扩大。从首批的9个实验班422名学生扩大到现在的21个省(市)的53所学校,116个班,6000余名学生。从初中三册教材的实验情况看,这三册书在师生条件较好的重点中学是可用的。教材的指导思想、基本结构和体系是合理的,它有利于“加强基础,培养能力,发展智力”,实验效果是良好的,学生的分析问题、思考问题、解决问题的能力,特别是代数中的推理论证能力较过去有所提高,计算的熟练程度稍差,但概念、算理方面的错误率较低,试验班的考试成绩,包括升学考试的成绩不低于普通班。从各地实验研究组和试教老师们的经验体会中得到很多启示,进一步深化了指导思想,提高了认识,进一步明确了以下三个带根本性的理论性问题。(一)教学结构应当是学科知识结构和认识结构的统一。教学结构不是学科知识结构的复制品,而应当是知识结构和认识结构的统一,它既要符合学科体系又要符合认识程序,这正是建立教学结构的困难所在。学科体系是在知识积累的基础上,用逻辑方法建立起来,往往会掩盖知识的背景和来龙去脉,颠倒认识的程序,所以学科的知识结构不能代替教学结构,教学结构的建立还必须考虑认识结构,必须把二者合理地统一起来,如何才能做到学科的知识结构和认识结构的合理统一?《实验教材》作了一些尝试,如前所述,《实验教材》突出了四个转折。五年的实验已经过了前三个转折。从第一、二批两遍实验情况看,前两个转折是成功的效果良好。采用突出“数系通性”(数系的运算性质)以实现从算术到代数的过渡的方法是合理的,可行的,有好处的,因为如前所述,代数的基本精神就是灵活运用算律去谋求问题的统一解法。有理数运算关键在于弄懂算理,理解数的运算过程的实质;解方程的基本原理是灵活运用“数系通性
本文标题:中学数学实验教材
链接地址:https://www.777doc.com/doc-5705640 .html