您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > SARS传播的数学模型和对经济的影响
SARS传播的数学模型和对经济的影响1/26SARS传播的数学模型及对经济的影响指导老师:覃思义参赛队员:李彦麟李小华刘纽SARS传播的数学模型及对经济的影响摘要本文针对SARS的传播以及对经济的影响分别建立了数学模型。首先,对附件1提供的早期模型,认为“传染概率”的说法欠妥,传染期限L的确定缺乏医学上的支持,使模型的说服力降低。模型中借鉴广东香港的参数来预测北京的疫情走势,不失为一种方法,但在不同地区因政策,地域的不同,病毒的传播和控制呈现不同的特点,使不同城市之间的可比性降低。故借鉴法存在一定的适用范围,且不能对首发城市进行预测。对于第二问,在分析常用传染病模型的局限性后,文中把患者所处的状态明确划分为潜伏阶段、发病阶段和隔离阶段,根据各阶段的转化关系建立了第一个数学模型。考虑到发病和被隔离等事件发生的随机性,本文在原有模型的基础上适当改进,建立了随机模拟模型。通过对5月10日以前数据的拟合,并经过500次模拟,对北京的疫情进行了预测:7月上旬北京将基本解除疫情,累计病例约2800多人。预测结果与实际情况符合得很好。另外,改变有关参数,发现提前5天采取严格的隔离措施,将使疫情解除的时间提前约10天,累计人数降至1958人;若延迟5天采取措施,疫情将推迟11天,累计人数达4487人。根据这些预测,文中对卫生部门采取控制措施提出了相关建议。对第三个问题,本文研究SARS对入境旅游人数的影响,建立了数学模型。通过数据拟合的方法确定日增长病例数对旅游人数的影响,预测9~12月份入境旅游人数分别为24.02,36.06,33.04,25.85万人。与往年同期相比,9月降低了23.5个百分点,10月以后影响逐步减小,经济进入恢复时期。对于第四个问题,给报刊写了一篇通俗短文,说明了建立传染病数学模型的重要性。最后在模型的评价中,对该模型优于原附件1模型的方面作了说明,特别说明了建立一个真正能预测和为预防、控制提供可靠、足够的信息的模型需要满足的条件和困难之处。SARS传播的数学模型和对经济的影响2/26一、问题的提出2002年至2003年,SARS(严重急性呼吸道综合症,俗称非典型肺炎)悄然无息地靠近我们的生活,在潜伏一段时间后忽然爆发,在全球掀起了轩然大波。作为重灾区的国家之一,我国的经济发展和人民生活受到了很大的影响。我们从中得到了许多重要的经验和教训,认识到定量研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。对此,要求对SARS的传播建立数学模型,具体要求如下:1、对附件1所提供的一个早期的模型,评价其合理性和实用性。2、对SARS的传播建立一个自己的模型,并说明:(1)为什么优于附件1中的模型;(2)怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,以及这样做的困难之处。(3)对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。(附件2提供的数据供参考。)3、收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。(附件3提供的数据供参考。)4、给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。二、对早期模型的评价附件1的模型主要采用“数据拟合”和“借鉴参数”的方法对北京疫情走势进行预测。在数据拟合方面,该模型中有两个疑点:1、感染期限L的确定。由于被严格隔离、治愈、死亡等原因,感染者在某一时段后不再具有对易感人群的传染力,故对病毒的传染加上感染期限是合理的。但在对该参数的确定上,作者为了较好地拟合各阶段的数据,通过人为调试来确定L的取值,缺乏医学上的支持,使模型的说服力减弱,合理性和可靠性大大降低。2、文中认为“K代表某种环境下一个人传染他人的平均概率”。但从模型的公式中可以看出,参数K的实际意义是一个病人平均每天传染其他人的个数。两者之间有实质的区别,文中的说法显然不妥。从预测思想来看,该模型是借鉴先发地区——广东、香港的有关参数对北京的疫情进行预测的。由于广东、香港的疫情和控制都在北京之前,已经过了高峰期,到5月8日为止每日新增病例已降至10来例,基本处于后期控制阶段。而当时北京的疫情刚过了高峰期,正处于社会剧烈调整时期,数据较为凌乱,略有下降趋势,但不明显。可见在当时,采取这种借鉴是无奈之举。SARS传播的数学模型和对经济的影响3/26但是由于城市之间的政策,风俗习惯等不同,城市之间的可比性不强,借鉴存在很大的局限性。如在香港,由于对传播机制认识不足,中途又出现高度感染的特殊情况。另外使用借鉴法无法对首发城市进行预测。三、传播模型(一)问题的分析在SARS爆发的初期,由于潜伏期的存在,人们对病毒传播速度和危害程度的认识不够,未能及时识别这一传染病的存在。但当病患数不断增加,政府开始采取应对措施对其进行控制,同时社会舆论加大宣传力度,人们的警觉性提高,病毒的传播速度下降。因此,我们通常把传染病的传播模式近似分为两个阶段:第一、自由传播阶段(即控前阶段):在采取切实有效的控制措施之前的一段时间。第二、控后阶段:介入人为因素之后的一段时间。由于SARS的传播涉及的因素很多,如潜伏期、人群的迁入迁出,感病者的数量、易感者的数量、传染率和治愈率的大小等。而且在以上因素中,潜伏期的大小、传染率和治愈率的大小因人而易,具有一定的随机性。不可能一开始就把所有的因素全部考虑在内建立模型。对此,我们将作出相应的假设进行简化。分析附件2所给出的数据,发现6月1日至15日,已确症病例累计数为2522人,其中夹杂3天累计数为2523人。但6月16日后累计数降至2521人,认为累计数的减少可能是误诊引起的。由于误诊的可能性很低,故在这里忽略不计。(二)基本假设1、国家卫生部提供的北京疫情统计真实可信。(误诊数仅为1,可忽略不计)。2、由于非典的主要传播途径是近距离接触,通过受感染者咳嗽或打喷嚏时产生的飞沫传播,这里将所有传播途径都视为与病源的直接接触。3、不考虑出生与自然死亡的过程和人群的迁入迁出(或认为迁入和迁出基本平衡),认为疾病传播期间所考察地区的总人数为常数。4、根据国家卫生部资料可知处于潜伏期的SARS病人不具有传染性。5、目前尚不清楚康复患者是否具有免疫力,但据国家卫生部资料可知康复后的病患无一例复发。故假设康复患者退出传染系统。6、根据资料显示,SARS病毒的潜伏期一般为2~7天,平均约为5天。(这一条件将在后期的模型中有所改动)(三)常用基本模型目前常用的传染病模型,通常将传染病流行范围内的人群分为三类:S类:易感者,指未得病者,但与感病者接触后容易受到感染。SARS传播的数学模型和对经济的影响4/26I类:感病者,指染上传染病的人。R类:移出者,指因患病而被隔离,或因病愈而具有免疫力的人,他们即非感病者,也非易感者,实际上他们已经退出了传染病系统。并通过三类之间的互相转化关系建立微分方程组进行求解:NRIShIdtdRhIkISdtdIkISdtdS(1)变量和符号说明:k——传染率:每个病人平均每天有效接触(足以使被解除者感染)的人数。h——退出率:单位时间内治愈和死亡人数占感病者人数的百分数。S(t)——易感人群的总数。I(t)——感病者总数。R(t)——退出者总数。N——一个城市总人口数。观察附件二中给出的数据,我们发现截至6月23日,感病者累计为2521人,远远小于北京城市的总人口数150万人,故认为感病者和退出者对易感人群的总数影响不大,易感者总人数I为一常数。原方程变形为:hIdtdRhIkINdtdI(2)注意到退出者不是我们研究的范围,故方程组(2)实际上是一个常微分方程IhIkNIdtdI(3)其中hkN,不难用分离变量法解出:teItI0)((4)其中I0为初始值。根据以上分析我们可以看出,常微分方程的传染病模型只适用于病例数与总人口数SARS传播的数学模型和对经济的影响5/26具有可比性的情况。当病例数远小于总人口数时,常微分方程模型的实质与附件1的模型相同,感病人数将随时间以指数增长。考虑这一特点,我们用计算机跟踪病毒的个体传播情况,建立了模拟模型。(四)计算机模拟模型:在该模型中,我们将传染系统中的人分为五类:自由携带者(][tf)——身上携带病毒并均匀散布在人群中的患者,根据基本假设自由携带者在潜伏期内不具有传染力,日增患者(][tx)——每天被医疗部门发现并加以隔离的感病者被隔离者(][ty)——因曾与自由携带者接触而被怀疑携带SARS病毒的人有效接触者(][1tz)——每日与自由携带者接触并感染上病毒的人无效接触者(][2tz)——每日与自由携带者接触但未染上病毒的人并作出如下假设:1、由于传染性SARS最初(1~2天)的症状通常为发热(o38),发热通常为高热[1]。症状明显,易于辨认,故可认为自由携带者发病后当天或第二天就立即入院治疗,入院后不会再参与疾病的传播。2、根据实际情况,假设SARS病人被发现的三天内,有关部门将采取措施,将部分与病源有效接触者隔离,这部分人即使发病后也不会参与疾病的传播。3、与病源有效接触者必然发病。根据基本假设,潜伏期一般为2至7天,这里取为5天。(这一假设在改进模型中有进一步的讨论。)另外,对模拟模型中出现的符号变量说明如下:1k——有效接触率,表示一个自由携带者平均每天有效接触的人数。2k——无效接触率,表示一个自由携带者平均每天无效接触的人数。——与自由携带者接触后(包括有效接触和无效接触)的人群中可以控制的人数所占的百分比。模拟模型中个体传播情况如图1所示:自由携带者1~5天处于潜伏期,不具有传染能力;5天后发病,发病后每天有效接触1k人,2天后(第7天)被隔离,在隔离前每天无效接触2k人。与病源接触后的可控人群(占接触者总人数的)在3天后被视为疑似病人。疑似病人中的有效接触者在接触病源的第7天被发现确认为日增患者,而有效接触者中其他人作为自由携带者留在人群中,继续这之前的个体传播。自由携带者有效接触者无效接触者自由携带者被隔离者7天后第6,7天7天中3天后SARS传播的数学模型和对经济的影响6/26图1:个体传播示意图用数学模型描述各个变量之间的关系如下:]6[]6[][][)1(][)6,2,1,0]([][][]6[][]5[11221111izifixizifjifkjizifkizifkiz(5)由于北京在4月20日才开始建立每日疫情报道制度,故认为政府采取严格的隔离措施开始于4月20日,以这一天为分界线,之前属于自由传播阶段。根据这一模型,用计算机模拟北京5月10日之前SARS的传播情况,并对5月10日以后的传播情况进行预测。图2:5月10日以前数据拟合图SARS传播的数学模型和对经济的影响7/26图3:5月10日以后的预测曲线通过图2两条曲线的拟合,得到控前的有效接触率(表征病毒的传染力)k=1.351,可控率(表征政府的控制力度)5.0;控后k1=0.8,=0.7。根据这两个参数作出5月10日的预测曲线见图3。,根据预测,北京将在第97天(6月下旬)实现零增长,累计病例数2448人。经过分析,以上确定型的模拟模型存在以下两点问题:第一、SARS病毒的潜伏期一般是2~7天,模型将潜伏期确定为5天,从感染到被发现的时间确定为7天,可以明显地看到以7天为传播周期的曲线变动,而在实际曲线中,虽然数据有上下波动的趋势,但周期性并不明显。第二、在采用隔离政策时,模型假定与病源接触的人群以固定的比例受到控制,这种假设加大了人为主观因素的影响。基于以上两点,在拟合5月10日之前的数据时,得到的有效接触率与实际统计数据有所偏差。这种偏差降低了模型的可信度。基于此,我们查找有关统计数据,为参数的确定寻求医学上的支持,并以随机模拟取代完全确定性的模拟,对原模型进行改进,建立了随机模拟模型。(五)改进后的随机模拟模型1、根据上文的分析,在原有模型的基础上作出如下改进假设:假设一:假设潜伏期的长短服从
本文标题:SARS传播的数学模型和对经济的影响
链接地址:https://www.777doc.com/doc-5708938 .html