您好,欢迎访问三七文档
微带天线综述摘要:微带天线具有结构紧凑、外观优美、体积小重量轻等优点,得到广泛的应用。但是,近年来,随着个人通讯和移动通讯技术的迅速发展,在天线的设计上提出了小型化的要求。本文除了对微带天线做了基本介绍外,还对微带天线最基本的小型化技术进行了探讨、分析和归纳。关键词:微带天线小型化宽频带一、引言随着全球通信业务的迅速发展,作为未来个人通信主要手段的无线移动通信技术己引起了人们的极大关注,在整个无线通讯系统中,天线是将射频信号转化为无线信号的关键器件,其性能的优良对无线通信工程的成败起到重要作用。快速发展的移动通信系统需要的是小型化、宽频带、多功能(多频段、多极化)、高性能的天线。微带天线作为天线家祖的重要一员,经过近几十年的发展,已经取得了可喜的进步,在移动终端中采用内置微带天线,不但可以减小天线对于人体的辐射,还可使手机的外形设计多样化,因此内置微带天线将是未来手机天线技术的发展方向之一,设计出具有小型化的微带天线不但具有一定的理论价值而且具有重要的应用价值,这也成为当前国际天线界研究的热点之一。二、微带天线2.1微带天线[1]的发展史及种类早在1953年G.A.DcDhamps教授就提出利用微带线的辐射来制成微带微波天线的概念。但是,在接下来的近20年里,对此只有一些零星的研究。直到1972年,由于微波集成技术的发展和空间技术对低剖面天线的迫切需求,芒森(R.E.Munson)和豪威尔(J.Q.Howell)等研究者制成了第一批实用的微带天线[1]。随之,国际上展开了对微带天线的广泛研究和应用。1979年在美国新墨西哥州大学举行了微带天线的专题目际会议,1981年IEEE天线与传播会刊在1月号上刊载了微带天线专辑。至此,微带天线已形成为天线领域中的一个专门分支,两本微带天线专辑也相继问世。80年代中,微带天线无论在理论与应用的深度上和广度上都获得了进一步的发展;今天,这一新型天线已趋于成熟,其应用正在与日俱增。微带天线也可看作是一种缝隙天线。其典型结构[2,3]如图2.1所示。(a)微带贴片天线(b)微带振子天线(c)微带行波天线(d)微带缝隙天线图2.1微带天线的典型结构通常介质基片的厚度与波长相比是很小的,因而它实现了一维小型化,属于电小天线的一类。另外,随着技术的进步,现在许多手机天线都是采用曲折线型的微带天线实现了手机天线的小型化。由各种微带辐射单元可构成多种多样的阵列天线,如微带贴片阵天线,微带振子阵天线,等等。2.1.1微带贴片天线微带贴片天线的最基本的结构模型便是薄的介质基片加其两侧的微带贴片和地板,其典型结构如图2.1(a)所示。它通过贴片和地板上的电流或等效为贴片四周与地板之间的缝隙上分布的等效磁流来辐射能量。2.1.2微带振子天线图2-2给出了一种利用微带线来进行耦合馈电的微带振子天线,微带振子的长度约为半个波长,宽度与微带馈线的宽度相同。微带振子与其下方的微带馈线有一部分相互交叠从而耦合能量,调整此交叠部分的面积从而改变馈线与微带振子的耦合量便可以调整天线谐振时的输入阻抗。对于此微带振子天线,我们也可以将馈线变化为槽线。此外,还可以将微带振子弯折以构成微带折合振子从而减小天线的尺寸。图2-2电磁耦合馈电的微带振子天线2.1.3微带行波天线微带线形天线是利用微带线的形变(如弯曲、拐角等),由微带线的不连续点或弯曲点来形成辐射。它们一般都端接匹配负载,沿线传输行波,故又被称为微带行波天线,其波瓣可以指向从端射到边射的任一方向。图2-3给出了几种常见的微带线型天线结构。与行波天线相对应的是微带驻波天线,其终端一般为开路或短路,波瓣一般指向边射方向。图2-3几种常见的微带线型天线结构[5,6]三、微带天线的小型化技术天线作为无线收发系统的一部分,其性能的优劣对整个系统的性能有着重要的影响。微带天线带宽相对较窄,通常低于3%,而无线通信技术的发展,特别是高速数据传输系统以及军用宽带无线系统的发展,要求天线具有更高的带宽。同时在随着电路集成度的提高,系统对天线的体积有着更高的要求,尤其是一些军用和民用的领域,如导弹制导系统和手机等等,物理空间的限制成为系统设计必须考虑的重要因素。此外随着天线尺寸的减小,天线效率会显著降低,带宽也(a)三角线(b)弯角线(c)链式线(d)城墙线图2-2几种常见的微带线型天线形式会随之变窄。如何在天线带宽等性能受尺寸限制的情况下,设计出宽带小型化的微带天线是近年出现的一个热门课题。当然优化微带天线设计方法的探讨有着重要的意义。3.1天线加载在微带天线上加载短路探针[4],通过与馈点接近的短路探针在谐振空腔中引入耦合电容以实现小型化,典型结构如图3.1所示。其缺点是:(1)阻抗匹配极大地依赖于短路探针的位置及其与馈电点的距离Δ,往往需要馈电点的精确定位和十分微小的Δ,这给制造公差提出了苛刻要求。(2)带宽窄。(3)H面的交叉极化电平相对较高。将短路探针替换为低阻抗的切片电阻(chipresistor),在进一步降低谐振频率的同时还可增加带宽。图3.1加载短路探针的微带天线3.2采用特殊材料基片从天线谐振频率关系式可以知道,谐振频率与介质参数成反比,因此采用高介电常数(如陶瓷材料)或高磁导率(如磁性材料)的基片可降低谐振频率,从而减小天线尺寸。这类高介质天线的主要缺陷是:(a)激励出较强的表面波,表面损耗较大,使增益减小,效率降低。(b)带宽窄。为提高增益,常在天线表面覆盖介质(如图3.2所示)。图3.2采用高r的多层介质微带天线3.3表面开槽(slot)[5]当在贴片表面开不同形式的槽或细缝时(如图3.3所示),切断了原先的表面电流路径,使电流绕槽边曲折流过而路径变长,在天线等效电路中相当于引入了级联电感。由于槽很窄,它可模拟为在贴片中插入一无限薄的横向磁壁。选择适当的槽从而控制贴片表面电流以激励相位差90°的极化简并模,还可形成圆极化辐射,以及实现双频工作。图3.4为表面开槽的口径耦合馈电的小型圆极化贴片天线。图3.3表面开槽的小型化微带天线图3.4小型口径耦合圆极化微带这类天线结构简单,成本低廉,加工方便,其特点是:随槽的长度增加,天线谐振频率降低,天线尺寸减小,但尺寸的过分缩减会引起性能的急剧劣化,其中带宽(一般约为1%)与增益尤为明显,而方向性影响不大。如何破除增益和带宽这两个限制,开发实用化、易调谐的此类天线尚待深入研究。3.4附加有源网络缩小无源天线的尺寸,会导致辐射电阻减小,效率降低。可利用有源网络的放大作用及阻抗补偿技术弥补由于天线尺寸缩小引起的指标下降。有源天线具有以下良好特性:(1)工作频带宽。利用有源网络的高输出阻抗、低输入阻抗,天线带宽高低端频比可达20~30。(2)增益高(可达10dB以上),方向性好。(3)便于实现阻抗匹配。(4)易实施天线方向图,包括主波方向、宽度、前后辐射比等的电控。(5)有源天线阵具有单元间弱互耦的潜在性能。但有源天线需考虑噪声及非线性失真问题。3.5采用特殊形式这些方法总的思路是使贴片的等效长度大于其物理长度,以实现小型化目的。近年来由于无线通信的需求,有大量方案提出,如蝶形(bow2tie)(如图3.5所示)、倒F型(PIFA,planarinverted2Fantenna)(如图3.6所示)、L形、E形、Y形、双C形、层叠短路贴片(stackedshortedpatch)等等。图3.5双频带蝶型微带天线图3.6电容加载的倒F型微带天线(PIFA)四、结束语微带天线由于具有体积小、重量轻、剖面薄、易与飞行器共形、易于加工、易与有源器件和电路集成为单一模块等诸多优点,因而自其诞生以来就得到社会各界的广泛研究与应用。通讯产品越来越小型化,物理空间的限制成为系统设计必须考虑的重要因素,因此天线的小型化成为天线设计的一个研究热点。如何设计出具有小型化的微带天线是当前微带天线设计的难点与重点。五、参考文献[1]G.A.Deschamps,Microstripmicrowaveantennas”,USAFSymp.onAntennas,1953.[2]钟顺时,微带天线理论与应用,西安电子科技大学出版社,1991[3]张钧,刘克诚等,微带天线理论与工程,国防工业出版社,1988[4]R.Porath,“Theoryofminiaturizedshorting-postmicrostripantennas”.IEEETrans.AntennasPropagat,vol.48,pp.41-46,Jul.2000.[5]S.Adnan,R.A.Abd-Alhameed,“CompactMicrostripAntennaDesignforMicrowaveImaging”.2010LoughboroughAntenna&PropagationConference,pp.389-392,Nov.2010
本文标题:微带天线综述
链接地址:https://www.777doc.com/doc-5712839 .html