您好,欢迎访问三七文档
(X;½)n½Xn=1;2;1Sn=1nXHilbertfengn=feng1Sn=1n1Sn=1nNSn=1n21Sn=N+1n21Sn=1nN809Nst.nN8x2n+pd(x;N)2N=NSn=1n1Sn=1nH=(X;¢;¢)EnXEn?Em1Ln=1En½HE½1Ln=1En½HEXBE;X0XE\X0=f0gE©X0XX0EX0EdimE1dimE=1e2EE=C¢eE©X0=C¢e©X0xn2C¢e©X0xn¡!xx2C¢e©X0xn=Cn¢e+ynx=C¢e+yy2X0d(xn;xm)=kxn¡xmk=k(Cn¡Cm)e+(yn¡ym)k=jCn¡Cmj¢ke+yn¡ymCn¡CmkdjCn¡Cmjd=d(e;X0)0jCn¡Cmj¡!0Cn¡!Cyn¡!y2X0X0x2C¢e+X0E©X0XX;YBX1;X2½XY1;Y2½YX1\X2=f0gY1\Y2=f0gX=X1©X2T12L(X1;Y2);T22L(X2;Y2);TjX1=T1;TjX2=T2Tx=T(x1+x2)=T1x1+T2x2T1P1:X¡!X1;P2:X¡!X2P1;P2T=T1¢P1+T2¢P2T1;T2;P1;P2T1.T2.T1;T2T¾(T1)[¾(T2)XBf:X¡!Ckerf½Xf2X¤f6´0kerf6=XkerfXx1;x2f(x1)=c16=0;f(x2)=c26=0x0=c2x1¡c1x2f(x0)=0kerfXe62kerff(e)6=08x2Xxx=C¢e+yy2kerff(e)=1f(x)=C¢f(e)+f(y)=C+0=Cf1=fjkerf?:C¢e7¡!C;f2=fjkerf:y7¡!0f1f2ffXBA;B2L(X)AB=BA8¸E¸=ker(¸I¡B)AHHilbertEHPE:H¡!EP¤E=PEPEP¤E=PEPEPEE¡!EH=E©E?¾(PE)=f0;1g¸6=0;1(¸I¡PE)¡1f2C1[0;1];kfkC1=kfkC+kf0kCC[0;1]Arzela-AscoliC1[0;1]T=(ddx)n+a1(ddx)n¡1+:::+an;a1;:::;anT:Cn[0;1]¡!C[0;1]TFredholmind(T)S:x(t)7¡!Rt0x(s)dsTS=id;TkSk=idSC[0;1]SnCn[0;1]T=(ddx)n(I+a1S+:::+anSn)a1S+:::+anSnCn[0;1]I+a1S+:::+anSnFredholm0(ddx)nFredholmnind(T)=n2AHilbertHA6´0limn!1(1kAkA)2n¡!H=L¸2¾p(A)E¸;x=P¸2¾p(A)x¸Ax=X¸2¾p(A)¸x¸;A2nx=X¸2¾p(A)¸2nx¸;A2nxkAk2n=X¸2¾p(A)(¸kAk)2nx¸:¸2¾p(A)nf¡kAk;kAkgj¸jkAka0a1P:x7¡!x¡kAk+xkAkPk(AkAk)2nx¡Pxk¡!0limn!1(1kAkA)2n¡!PX=C[0;1];E½C1[0;1]EXEdimE+1EArzela-Ascoli8f(x)2E;x;y2[0;1]jf(x)¡f(y)j=jRyxf0(t)dtj6Ryxjf0(t)jdtf0(t)kfkC1[0;1]=kfkC[0;1]+kf0kC[0;1](E;k¢kC1)(E;k¢kC[0;1])f0(t)l2A:(x1;x2;:::)¡!(¸1x1;¸2x2;:::)f¸ngA2L(l2)¾(A)¾¾p(A)=f¸1;¸2;:::g¾(A)=¾p(A)A1;A22L(H)HHilbertx;A1x=x;A2x;8x2HA1=A28x;y2H;x;A1y=x;A2yRiesza(x;y)=x;A1y;b(x;y)=x;A2ya(x;y)=14(Á(x+y)¡Á(x¡y)+iÁ(x+yi)¡iÁ(x¡yi))Á(z)=a(z;z)Á(x)=a(x;x)=x;A1x=x;A2x=b(x;x)a(x;y)=b(x;y)x;A1x=x;A2xA1=A2kak=supkxk=kyk=1ja(x;y)jkÁk=supkzk=1jÁ(z)jkÁk6kak62kÁk3XBxn2X8f2X¤1Pn=1jf(xn)jp+1;(16p+1)M0(1Pn=1jf(xn)jp)1p6kfk¢M(f(x1);f(x2);:::)2lpT:X¤¡!lp;f7¡!(f(x1);f(x2);:::)T4
本文标题:泛函分析试题及解答
链接地址:https://www.777doc.com/doc-5714869 .html