您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2019年山东济宁任城区一模数学试卷
12019年任城区一模试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.﹣2的相反数是()A.2B.﹣2C.1D.-12.若22在实数范围内有意义,则a的取值范围是()A.a>3B.a<3C.a≥3D.a≤33.下列计算中,正确的是()A.a6÷a2=a3B.(a+1)2=a2+1C.(﹣a)3=﹣a3D.(ab3)2=a2b54.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为()A.5.8×1010B.5.8×1011C.58×109D.0.58×10115.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D.一样大6.下列图形中,是中心对称图形的是()A.BC.D.7.本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动.小江统计了班级30名同学四月份的诗词背诵数量,具体数据如表所示:诗词数量(首)4567891011人数34457511那么这30名同学四月份诗词背诵数量的众数和中位数分别是()A.11,7B.7,5C.8,8D.8,7a328.近年来某市不断加大对城市绿化的经济收入,使全市绿地面积不断增加,从2015年底到2017年底的城市绿化面积变化如图所示,则这两年绿地面积的年平均增长率是()A.10%B.15%C.20%D.25%9.如图,Rt△AOB中,∠OAB=90°,OA=6,OA在x轴的正半轴,OB,AB分别与双曲线y=k1x(k1≠0),y=k2(k2≠0)相交于点C和点D,且BC:CO=1:2,若CD∥OA,则点E的横坐x标为()A.2B.3C.8D.4310.如图,正方形ABCD中,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG,BF.给出以下结论:①△DAG≌△DFG;②BG=2AG;③△EBF~△DEG;④SBFC=2SBEF.其中所有正确结论的个数是()3A.1B.2C.3D.4二、填空题(本大题共5小题,每小题3分,共15分)11.分解因式:x2﹣16=.△312.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是.13.《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为.14.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为(结果保留π)15.观察一列数:1,﹣2,3,﹣4,5,﹣6,7…,将这列数排成如图所示形式:记aij为第i行第j列的数,如a23=﹣4,那么a86是.三、解答题(本大题共55分,解答要写出必要的文字说明或推演步骤)16.(6分)计算:|﹣3|+(π﹣2018)0﹣2sin30°.417.(6分)“端午节”是人国的传统佳节,民间历史有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图,请回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D粽的人数?18.(7分)如图,一搜救船在海面A处测得亚航失事客机的第一个黑匣子的俯角∠EAC为60°,第二个黑匣子的俯角∠EAB为30°,此处海底的深度AD为3千米.求两个黑匣子的距离BC的长?(取≈1.73,精确到0.1千米)519.(8分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?20.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.621.(9分)阅读下面的材料,再回答问题.我们知道利用换元法与整体的思想方法可以解方程,分解因式等等,还可以求函数的解析式等.一般地,函数解析式表达形式为:y=x+1,y=x2+2x﹣3,y=3.x还可以表示为:f(x)=x+1,f(x)=x2+2x﹣3,f(x)=3x的形式.我们知道:f(x)=x+1和f(t)=t+1和f(u)=u+1等等表达的意思一样的.举个例子:f(x+1)=x2,设x+1=t,则x=t﹣1,f(t)=(t﹣1)2.即f(x)=(t﹣1)2已知:函数f(x+1)=x2﹣2x,求函数f(x)的解析式.分析:我们可以用换元法设x+1=t来进行求解.解:设x+1=t,则x=t﹣1,所以f(t)=(t﹣1)2﹣2(t﹣1)=t2﹣2t+1﹣2t+2=t2﹣4t+3所以f(x)=x2﹣4x+3看完后,你学会了这种方法了吗?亲自试一试吧!你准行!(1)若f(x)=x﹣1,求f(x﹣3).(2)若f(2x+1)=x+1,求f(x).(3)若f(x1)xx21x21(x0,x1),求f(x).x=722.(11分)在平面直角坐标系中,抛物线y=1x2+bx经过点A(﹣3,4).3(1)求b的值;(2)过点A作x轴的平行线交抛物线于另一点B,在直线AB上任取一点P,作点A关于直线OP的对称点C;①当点C恰巧落在x轴时,求直线OP的表达式;②连结BC,求BC的最小值(直接写出答案).892019年任城区数学一模试卷一、选择题(30分)题号12345678910答案ACCACCDAAB二、填空题(15分)11.(x+4)(x﹣4)12.113.14.π﹣215.55316.解:|﹣3|+(π﹣2018)0﹣2sin30°.=,=3.17.解:(1)本次参加抽样调查的居民的人数是:60÷10%=600(人);(2)C类的人数是:600﹣180﹣60﹣240=120(人),所占的百分比是×100%=20%,A类所占的百分比是×100%=30%.(3)8000×40%=3200(人).18.解:由题意知:∠DAC=30°,△ADC是直角三角形,在Rt△ADC中,cos30°=,∴AC=2,∵∠CAB=∠ABC=30°,∴BC=AC=2≈3.5(千米),答:两个黑匣子的距离BC的长为3.5千米.1019.解:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得﹣=4,解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×3+2(54+a)≥360,解得:a≥45.答:则至少每年平均增加45万平方米.20.解(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,11∴EC2=DE•AE,∴16=2(2+AD),∴AD=6.21.解:(1)∵f(x)=x﹣1,∴f(x﹣3)=(x﹣3)﹣1=x﹣4;(2)∴f(2x+1)=x+1,设2x+1=t,则x=,∴f(t)=+1=,∴f(x)=.(3)∴f()=,设t=,则x=,(t≠1),∴f(t)=1+(t﹣1)2+(t﹣1)=t2﹣t+1,∴f(x)=x2﹣x+1(x≠1).22.解:(1)由题意把点A(﹣3,4)代入y=2+bx,得,3﹣3b=4,解得,b=﹣;(2)①当点C恰巧落在x轴上时,设直线AB与y轴交于点D,∵A(﹣3,4),∴AD=3,DO=4,在Rt△AOD中,AO==5,∴,12如图1﹣1,当点P在点A左侧时,∵点A与点C关于OP对称,∴PA=PC,OA=OC,又∵OP=OP,∴△APO≌△CPO(SSS),∴∠POC=∠AOP,∵AB∥x轴,∴∠APO=∠POC,∴∠APO=∠AOP,∴AP=AO=5,∴PD=PA+AD=8,∴P(﹣8,4),将P(﹣8,4)代入y=kx,得,﹣8k=4,解得,k=﹣,∴yOP=﹣x;如图1﹣2,当点P在点A右侧时,同理可证△APO≌△CPO(SSS),AP=AO=5,∴DP=AP﹣AD=5﹣3=2,∴P(2,4),将点P(2,4)代入y=kx+b,得,2k=4,∴k=2,∴yOP=2x;综上所述,yOP=﹣x,或yOP=2x;13②如图2,由题意可知,随着点P在直线AB上运动,点C的轨迹为以O为圆心,以AO为半径的圆,∴连接OB,当点C在OB与⊙O的交点处时,BC的值最小,在y=x2﹣x中,当y=4时,x=﹣3或4,∵A(﹣3,4),∴B(4,4),∴OB==4,∴BC=OB﹣OC=4﹣5,∴BC的最小值为4﹣5.
本文标题:2019年山东济宁任城区一模数学试卷
链接地址:https://www.777doc.com/doc-5715090 .html