您好,欢迎访问三七文档
青霉素课程设计青霉素生产使用手册生物学术知识2007-11-1511:00:04阅读1591评论9字号:大中小订阅第一章背景知识...51.1青霉素的发现...51.2青霉素分类及分子结构...51.3青霉素的单位...61.4作用机理...61.5青霉素的应用...7第二章发酵工艺过程...72.1菌种介绍...72.2菌种的保藏...72.3孢子的制备...82.4种子制备...82.5发酵培养基介绍...82.6灭菌...102.7发酵...102.7.1发酵的过程控制...102.7.2防止染菌的要点...122.7.3空气系统的要求...122.7.4蒸汽系统的要求...12第三章提炼工艺过程...133.1发酵液预处理...133.2提取...133.3精制...153.3.1脱色和去热原质...153.3.2结晶...153.4成品鉴定...163.5成品分装...16第四章主要工艺指标...17第五章主要设备列表及仿真操作设备...19第六章操作规程...216.1发酵工艺过程...216.1.1正常发酵(过程)...216.1.2出料...226.1.3发酵过程中PH值低...226.1.4发酵过程中PH值高...226.1.5发酵过程中溶解氧低...226.1.6残糖浓度低...226.1.7发酵过程中温度高...226.1.8泡沫高...226.2提炼工艺过程...226.2.1预处理操作...236.2.2一次BA萃取操作...236.2.3一次反萃取操作...246.2.4二次BA萃取操作...246.2.5脱色罐操作...256.2.6结晶罐及抽滤、干燥操作...25第七章主要操作画面...277.1青霉素工艺流程界面...277.2菌种介绍界面...287.3孢子制备界面...287.4种子制备界面...297.5灭菌界面...297.6培养基制备界面...307.7发酵工艺操作界面...307.8发酵罐操作界面...317.9菌种曲线界面...317.10预处理界面...327.11提取流程总貌...327.12一次BA萃取界面...337.13精制流程总貌...337.14脱色操作界面...347.15结晶操作界面...347.16抽滤、干燥操作界面...357.17成品鉴定界面...357.18成品分装界面...36第一章背景知识1.1青霉素的发现1928年,英国细菌学家Fleming发现污染在培养葡萄球菌的双蝶上的一株霉菌能杀死周围的葡萄球菌。他将此霉菌分离纯化后得到的菌株经鉴定为点青霉,并将这菌所产生的抗生物质命名为青霉素。1940年,英国Florey和Chain进一步研究此菌,并从培养液中制出了干燥的青霉素制品。经实验和临床试验证明,它毒性很小,并对一些革兰氏阳性菌所引起的许多疾病有卓越的疗效。1.2青霉素分类及分子结构青霉素是6-氨基青霉烷酸(6-aminopenicillanicacid,6-APA)苯乙酰衍生物。侧链基团不同,形成不同的青霉素,主要是青霉素G。工业上应用的有钠、钾、普鲁卡因、二苄基乙二胺盐。青霉素发酵液中含有5种以上天然青霉素(如青霉素F、G、X、K、F和V等),它们的差别仅在于侧链R基团的结构不同,其中青霉素G在医疗中用得最多,它的钠或钾盐为治疗革兰氏阳性菌的首选药物,对革兰氏阴性菌也有强大的抑制作用。青霉素的结构通式可表示为1.3青霉素的单位目前国际上青霉素活性单位表示方法有两种:一是指定单位(unit);二是活性质量(μg),最早为青霉素规定的指定单位是:50mL肉汤培养基中恰能抑制标准金葡萄菌生长的青霉素量为一个青霉素单位。在以后,证明了一个青霉素单位相当于0.6μg青霉素钠。因此青霉素的质量单位为:0.6μg青霉素钠等于1个青霉素单位。由此,1mg青霉素钠等于1670个青霉素单位(unit)。1.4作用机理已有的研究认为,青霉素的抗菌作用与抑制细胞壁的合成有关。细菌的细胞壁是一层坚韧的厚膜,用以抵抗外界的压力,维持细胞的形状。细胞壁的里面是细胞膜,膜内裹着细胞质。细菌的细胞壁主要由多糖组成,也含有蛋白质和脂质。革兰氏阳性菌细胞壁的组成是肽聚糖占细胞壁干重的50%~80%(革兰氏阴性菌为1%~10%)、磷壁酸质、脂蛋白、多糖和蛋白质。其中肽聚糖是一种含有乙酰基葡萄糖胺和短肽单元的网状生物大分子,在它的生物合成中需要一种关键的酶即转肽酶。青霉素作用的部位就是这个转肽酶。现已证明青霉素内酞胺环上的高反应性肽键受到转肽酶活性部位上丝氨酸残基的羟基的亲核进攻形成了共价键,生成青霉噻唑酰基-酶复合物,从而不可逆的抑制了该酶的催化活性。通过抑制转肽酶,青霉素使细胞壁的合成受到抑制,细菌的抗渗透压能力降低,引起菌体变形,破裂而死亡。1.5青霉素的应用临床应用:40多年,主要控制敏感金黄色葡糖球菌、链球菌、肺炎双球菌、淋球菌、脑膜炎双球菌、螺旋体等引起感染,对大多数革兰氏阳性菌(如金黄色葡萄球菌)和某些革兰氏阴性细菌及螺旋体有抗菌作用。优点:毒性小,但由于难以分离除去青霉噻唑酸蛋白(微量可能引起过敏反应),需要皮试。各种半合成抗生素的原料:青霉素的缺点是对酸不稳定,不能口服,排泄快,对阴性菌无效。氨苄青霉素耐酸广谱;对抗绿脓杆菌的磺苄青霉素,耐酸、耐酶、口服的乙氧萘青霉素等。提供头孢菌素母核。第二章发酵工艺过程2.1菌种介绍青霉是产生青霉素的重要菌种。广泛分布于空气、土壤和各种物上,常生长在腐烂的柑桔皮上呈青绿色。目前已发现几百种,其中产黄青霉(Penicillumchrysogenum)、点青霉(Penicillumnototum)等都能大量产生青霉素。青霉素的发现和大规模地生产、应用,不仅对抗生素工业的发展起了巨大的推动作用,而且加上其他抗生素的广泛使用,比如像磺胺药物,使人类的平均寿命,再次延长了四岁。此外,有的青霉菌还用于生产灰黄霉素及磷酸二酯酶、纤维素酶等酶制剂和有机酸。1981年报导,疠孢青霉是纤维素酶的新来源,它能分解棉花纤维。2.2菌种的保藏菌种的保藏方法有:斜面菌种低温保藏法、砂土管保藏法、甘油封藏法、真空冷冻干燥法。斜面菌种低温保藏法利用低温对微生物生命活动有抑制作用的原理进行保藏。把斜面菌种、固体穿刺培养物或菌悬液等,直接放入4~5℃冰箱中。保藏时间一般不超过3个月,到时必须进行移接传代,再放回冰箱。砂土管保藏法将干燥砂粒与细土混合后灭菌制成砂土管,然后接种保藏。若把砂土管放在低温或抽气后密封,效果更佳。此法适用于产孢子及芽孢菌种的保藏。保藏期1~10年。甘油封藏法向培养好的菌种斜面上,加入灭菌甘油,高出斜面1cm,然后蜡封管口,放入冰箱。该法既可防止培养基水分蒸发,又能使菌种与空气隔绝。保藏期1~2年。真空冷冻干燥法是目前比较理想的一种方法。在低于-15℃下,快速将细胞冻结,并保持细胞完整,然后在真空中使水分升华致干。在此环境中,微生物的生长和代谢都暂时停止,不易发生变异,故可长时间保存,一般为5~10年,最多可达15年之久。此法兼备了低温、干燥及缺氧几方面条件,使微生物可以保存较长时间,但过程较麻烦,需要一定的设备。2.3孢子的制备这是发酵工序的开端,是一个重要环节。抗生素产量和成品质量同菌种性能以及同孢子和种子的情况有密切关系。生产用的孢子需经过纯种和生产能力的检验,符合规定的才能用来制备种子。保藏在砂土管或冷冻干燥管仲的菌种经无菌手续接入适合于孢子发芽或菌丝生长的斜面培养基中,经培养成熟后挑选菌落正常的孢子可再一次接入试管斜面。对于产孢子能力强的及孢子发芽、生长繁殖快的菌种可以采用固体培养基孢子,孢子可直接作为中子罐的种子。2.4种子制备种子制备是指孢子接入种子罐后,在罐中繁殖成大量菌丝的过程,其目的是使孢子发芽、繁殖和获得足够数量的菌丝,以便接种到发酵罐当中去。种子制备所使用的培养基及其它工艺条件,都要有利于孢子发芽和菌丝繁殖。种子罐级数是在指制备种子需逐级扩大培养的次数,一般根据种子的生长特性、孢子发芽及菌体繁殖速度,以及发酵罐的容积而定。青霉素种子制备一般为二级种子罐扩大培养。2.5发酵培养基介绍培养基是供微生物生长繁殖和合成各种代谢产物所需要的按一定比例配制的多种营养物质的混合物。培养基的组成和比例是否恰当,直接影响微生物的生长、生产和工艺选择、产品质量和产量等。青霉素的发酵培养基由碳源、氮源、无机盐及金属离子、添加前体、消沫剂五部分组成。碳源的主要作用是:为微生物菌种的生长繁殖提供能源和合成菌体所必需的碳成分;为合成目的产物提供所需的碳成分。青霉素发酵中常用乳酸或葡萄糖,也可采用葡萄糖母液、糖蜜等。其中乳糖最为便宜,但因货源较少,很多国家采用葡萄糖代替。但当葡萄糖浓度超过一定限度时,会过分加速菌体的呼吸,以至培养基中的溶解氧不能满足需要,使一些中间代谢物不能完全氧化而积累在菌体或培养基中,导致pH下降,影响某些酶的活性,从而抑制微生物的生长河产物的合成。氮源的作用是供应菌体合成氨基酸和三肽的原料,以进一步合成青霉素。主要有机氮源为玉米浆、棉籽饼粉、花生饼粉、酵母粉、蛋白胨等。玉米浆为较理想的氮源,含固体量少,有利于通气及氧的传递,因而利用率较高。固体有机氮源原料一般需粉碎至200目以下的细度。有机氮源还可以提供一部分有机磷,供菌体生长。无机氮如硝酸盐、尿素、硫酸铵等可适量使用。碳酸钙用来中和发酵过程中产生的杂酸,并控制发酵液的pH值,为菌体提供营养的无机磷源一般采用磷酸二氢钾。另外加入硫代硫酸钠或硫酸钠以提供青霉素分子中所需的硫。由于现在还有一些工厂采用铁罐发酵,在发酵过程中铁离子便逐渐进入发酵液。发酵时间愈长,则铁离子愈多。铁离子在50µg/ml以上便会影响青霉素的合成。采用铁络合剂以抑制铁离子的影响,但实际对青霉素产量并无改进。所以青霉素的发酵罐采用不锈钢制造为宜,其他重金属离子如铜、汞、锌等能催化青霉素的分解反应。添加苯乙酸或者苯乙酰胺,可以借酰基转移的作用,将苯乙酸转入青霉素分子,提高青霉素G的生产强度,添加苯氧乙酸则产生青霉素V。因此前体的加入成为青霉素发酵的关键问题之一。但苯乙酸对发酵有影响,一般以苯乙酰胺较好。也有人采用苯乙酸月桂醇酯,其优点是在发酵中月桂醇酯水解,苯乙酸结合进青霉素成品。而月桂酸作为细菌营养剂及发酵液消沫剂,且其毒性比苯乙酸小,但价格较贵。前体要在发酵开始20h后加入,并在整个发酵过程中控制在50µg/ml左右由于在发酵过程中二氧化碳的不断产生,加上培养基中有很多有机氮源含有蛋白质,因此在发酵罐内会产生大量泡沫,如不严加控制,就会产生发酵液逃液,导致染菌的后果。采用植物油消沫仍旧是个好方法,一方面作为消沫剂,另一方面还可以起到碳源作用,但现在已普遍采用合成消沫剂(如聚酯、聚醇类消沫剂)代替豆油。2.6灭菌“灭菌”指的是用化学或物理的方法杀灭或除去物料及设备中所有的有生命物质的技术或工艺流程。灭菌实质上可分杀菌和溶菌两种,前者指菌体虽死,但形体尚存,后者则指菌体杀死后,其细胞发生溶化、消失的现象。工业上常用的方法有:干热灭菌、湿热灭菌、化学药剂灭菌、射线灭菌和介质过滤除菌等几种。在青霉素的生产中,对培养基和发酵罐主要采用的是湿热蒸汽灭菌和空气过滤除菌的方法。2.7发酵这一过程的目的主要是为了使微生物分泌大量的抗生素。发酵开始前,有关设备和培养基必须先经过灭菌,后接入种子。接种量一般为5~20%。发酵周期一般为4~5天,但也有少于24小时,或长达二周以上的。在整个过程中,需要不断通气和搅拌,维持一定的罐温和罐压,并隔一段时间取样进行生化分析和无菌试验,观察代谢变化、抗生素产生情况和有无杂菌污染。2.7.1发酵的过程控制1、碳源控制:青霉菌能利用多种碳源,如乳糖、蔗糖、葡萄糖、阿拉伯糖、甘露糖、淀粉和天然油脂等。乳糖是青霉素生物合成的最好碳源,葡萄糖也是比较好的碳源,但必须控制其加入的浓度,因为葡萄糖易被菌体氧化并产生抑制抗生素合成酶形成的物质,从而影响青霉素的合成,所以可以采用连续添加葡萄糖的方法代替乳糖。苯乙酸或其衍生物苯乙酰胺、苯乙胺、苯乙酰甘氨酸等均可作为青霉素G的侧链前体。菌体对
本文标题:青霉素课程设计
链接地址:https://www.777doc.com/doc-5719341 .html