您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 阎守胜固体物理基础第9-12课后习题
1222222022242n9.12dsinsin(1)d(2)42nsin=3ahkl2A,n=2.983.23.33.84.8ndahklhklahkl第九章即:()其中,立方晶格常数;,,是晶面的密勒指数。第一个峰值的位置是只考虑一阶项,取=1。即为111面其他峰值的位置(从左到右)依次为:,,,,2225410.8914.4423.042512.723.615.766.2538.1610.8317.2818.753911hkl这些峰值的位置的平方为:,,,,取第一个峰值的位置进行归一化得:,,,,用已经算的111面取标定其他面的值得,,,,取整数得:,,,1719111;221,对应的晶面为:或212或122;311或131或113;322或232或223;331或313或1332000iiiiii9.2HH=H1H|(2)2H|()|()|()|()|()(iiiiiiiiiijTTTarREarREarRaTrREarRrR格点哈密顿量:()其中表示该格点对电子的作用,表示为其他所有格点对电子作用之和。H(r)=E|(r)由()可得:()即两边同时左乘ii)|EEijiiijaTEEaTjj即得:得证。22220-89.3nenenene=1kN2k2(2)221ee==2210cm,1,1FFFFFFFFlkVlmmVkkSnlkklAkl222222代公式有:又有:把代入得:因为所以300000LL0LL09.411ln(lnln(1lnln(ln(=lnlnln()11ln((ln(())|1()ln((LLLLLLdgLdLdgLdLdgLdgLLdLdLLdgLdgLgLCgLCgLC-,三维gCC(g)=d-2--,二维ggC-,一维g)又由(g)=得:当体系为三维时:)C-g))CC--gg)1)Cg-c-g00000000LL0L000LL0)ln()()(()))ln(ln(lnln()ln(ln()()()ln()2ln(ln(-1lnln()ln-1(LLLLLLLgLgLCCCLLdgLdgLLdLdLLdgLLLgLgLCCLLdgLdgLLdLdLLdg……1当体系为二维时:)C)-Cg-g)……当体系为一维时:)C)-Cg-g0L00000000022200200200ln()()()ln()-g(L)C()(()),3()()ln()()()ln(),1g()11[]L)ln()[]LLLLgLgLCCLLLgLgLCCdLLgLgLCLLgLgLCCdLLLeeCLLeLCLeCLL)……3-即得:g(L)=,d=2又由得:(4''()+''()+''''()()''2++9.5iq=exp[-()]iq=exp[()]iqiqexp[()]exp[-()]=P-q()1(())[(')](')(')21[(2mCrCrCrCrArdrArdrPArdrPArdrArpqArVrrErmPPVr证明:令算符:那么:则,磁场中的schrondinger方程为:+2++2++++2+++2+200')](')(')1[(')](')(')2m1[(')](')(')2m1[(')](')(')2m1[(')](')(')22m1[(')](')(')32mrErPVrrErPVrrErPVrrErPVrrErPVrrEr两边同时右乘得:又:把3回代到2式得:+20+0++++0+0+++0+0'2+0+0+0''0()1[(')](')(')2m1[P(')](')(')2m1[P(')](')(')2m(())[(')](')(')2iq(')(')=exp[()](')CrPVrrErPVrrErPVrrErpqArVrrErmrrArdrr即得证:581481911131269.610nm10/10nm=1010/11.6101.76109.1110()()3.1100cccmsscmsBesmBFFl为,取V,则:lV()()()()()()()()()00()009.711P(11(1)(1)1i11P(111(1EuiKTEuEuEuijijKTKTKTEujjiKTjiEuEuEuijiKTKTKjEuKTEEEEkTkTPePeeeePeePeeeejij一、考虑到态的占据几率时,从j到i态的跃迁几率:)=二、考虑到态的占据几率时,从到j态的跃迁几率:)=()()()()0)(1)=(1)(1)PPEujTKTEuiKTEuEujiKTKTjePeeejij即得证:6222229.82RP=exp(-)Dqq2Rexp(-)q2R=neu=neexp(-)q2R=neu=neexp(-KTPRPRRKTKTKTRKTKTRKT跳跃电导的电子在两个局域态之间的跃迁几率为:,其中是比例系数。如果把电子在定域态之间的跃迁看着是布朗运动,即得扩散系数为:根据扩散系数与迁移率之间的爱因斯坦关系得:u=则电导率为:当存在电场时:2-e)q2R-eJ=neuE=neEexp(-)ERKTERERKTKT假设欧姆定律仍成立,即得:70--010.1Acos()=Acos()1+)Acos(+)=Acos()2IAcoee+++假设:沿正方向的波函数回到出发点时的表达式为:由于金属膜有一定厚度,因此沿负方向的波函数回到出发点时所走的路程围绕的面积会有微小的差别,不妨把其表达式写为:(()那么电子束的强度为:=[2-00-2002220000200+)s()Acos()]A=A=A+)I=Acos()Acos()]+)+)=A[cos()cos()2cos()cos()]1212+2=A{[1+cos()][1+cos()][cos(22+(假设:,那么上式可以化为:([((()002000020000200+)os()]}122+2+=A{1+[cos()cos()][cos()os()]}2122+2+=A{1+[cos()cos()+2cos()]os()}22+/2=A{1+cos()cos()cos2ccc()()00020000200002202+3/2()cos()os()}22+/22+3/2=A{1+cos()[cos()cos()]os()}22+2+/2=A{1+2cos()cos()cos()os()}22A{1+2cos()cos(2ccc()(0022000220022200220+)os()}2+2Acos()cos()os()}22+2Acos()cos()22+2A1-())cos()2A2A1-())2Bcc')去掉直流项:()()当的变化很小时,上式等于:()(令:(显然的增加会导致的增加,从而使A'振幅下降。822733Ag23Ag5-23-2853410.214430103.14()10.493326.0210M1088.262101.3810==1.671028.26210T1083100.1083BBvvABvkkTcTNcNcmrNkcNTTKvmin由题意可知:……1N=代入一式得:……又:c代入上式解得:6882332F2210.3ne1;=,.2219.33.142.4106.0109.0106.022101972.40103()142232219.33.142.4FAACFAAAAAClVlmMNdSNNAASNkknMNVNdNNnSASASAdNdSNSNAA测得即可得623883106.022106.0109.01021971.201093889349531195802622244242241.21026.0109.0101.18101.055101.1810=1.37109.11101.6101.37107.010()(3.142.410)15.34107.53610CAAFFFFNdNdSNkAASSkVmeVllIILd10122.031011330l010.40.20840=0.711nmP154VBesselj(x)1s,1p,1d,2s,1f,2p,1g,2d,3s,1h,2f,1i,3p,2g,1k,3d,4sV=NrrNnmN0N参阅曾瑾言量子力学习题集上册页,可知:0rr对于球方势阱=Vrr即得:球方势阱的能级对应于函数零点值,对应的能级出现的先后顺序为:……取031192.29evk229.11102.291.610k7.780.7115.533.5222s3s2+6+10+2+18+6402+6+10+2+182p2.00eVNuVr0-349-10金属表面的逸出功,则=//1.0510=7.7810m。对应的可能出现的最高能级在到之间。固最高占据能级为:,合理的估算其值为:10[()r]000002010.59.5=ee=eeL+=2m,Lm2(m-)2m-=2LL=BS,AB1D=1nmS=D=4SyxyxiqArdiKyiKxiqBSiKyiKxyyeeqKBSqBSKhqB根据题的结论:加纵向磁场后,波函数变为:……1由1式得:为纳米管的周长,取整数。……其中,显然会观察到以为周期的效应。当时,34419186.631045.2710()1.6103.1410T11h22hh^^^^n,m)CC=an=arctg)2C2(b)2433a(b)a22(c)2433a(b)a2cnambnmmmcaAAacaaaBBaca10.6对于一般的碳纳米管:(有:……13(…m+2n其中表示周长,表示碳纳米管管轴与参考轴之间的夹角。平面石墨的倒格矢:AB其中,为垂'h22'222||4a3a3||4'3a3CK2,3.4ancos()234an32nbqqnmmqanmmanm直与表面向下的单位矢量。则六角布里渊区
本文标题:阎守胜固体物理基础第9-12课后习题
链接地址:https://www.777doc.com/doc-5720702 .html