您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 平行四边形全章复习与巩固练习
平行四边形全章复习与巩固练习【基础练习】一.选择题1.如图,□ABCD中,AB=3cm,AD=4cm,DE平分∠ADC交BC边于点E,则BE的长等于()A.2cmB.1cmC.1.5cmD.3cm第1题第3题第6题第8题2.在口ABCD中,AB=3cm,AD=4cm,∠A=120°,则口ABCD的面积是A.33B.36C.315D.3123.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有()A.0个B.1个C.2个D.3个4.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三个角是否都为直角5.正方形具备而菱形不具备的性质是()A.对角线相等;B.对角线互相垂直;C.每条对角线平分一组对角;D.对角线互相平分.6.如图所示,口ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC,交AD于点E,则△DCE的周长为().A.4cmB.6cmC.8cmD.10cm7.矩形对角线相交成钝角120°,短边长为2.8cm,则对角线的长为()A.2.8cmB.1.4cmC.5.6cmD.11.2cm8.如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A.16aB.12aC.8aD.4a二.填空题9.如图,若口ABCD与口EBCF关于B,C所在直线对称,∠ABE=90°,则∠F__.第9题第11题10.矩形的两条对角线所夹的锐角为60,较短的边长为12,则对角线长为_____.11.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为______.12.如图,在△ABC中,AB=AC=5,D是BC边上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是.第12题第13题第16题13.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角形的直角顶点落在点A,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是_________.14.已知菱形ABCD的面积是122cm,对角线AC=4cm,则菱形的边长是____cm.15.菱形ABCD中,AE垂直平分BC,垂足为E,AB=4cm.那么,菱形ABCD的面积是________,对角线BD的长是_________.16.如图,在矩形ABCD中,对角线AC、BD交于点O,若∠AOD=120°,AB=1,则AC=,BC=.三.解答题17.已知,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,求四边形EFGH的周长.18.如图,在口ABCD中,AC、BD交于点O,AE⊥BC于E,EO交AD于F,求证:四边形AECF是矩形.19.如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.20.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.【提高练习】一.选择题1.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形面积的()A.B.C.D.第1题第4题第5题2.顺次连结任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形3.已知平行四边形的一条边长为10cm.其两条对角线长可能是()A.6cm,12cmB.8cm,10cmC.10cm,12cmD.8cm,12cm4.如图,在矩形ABCD中,点P是BC边上的动点,点R是CD边上的定点。点E、F分别是AP,PR的中点。当点P在BC上从B向C移动时,下列结论成立的是()A.线段EF的长逐渐变大;B.线段EF的长逐渐减小;C.线段EF的长不改变;D.线段EF的长不能确定.5.如图,△ABC的周长为26,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P.若BC=10,则PQ的长是()A.1.5B.2C.3D.46.如图,矩形ABCD的周长是20cm,以AB、CD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和682cm,那么矩形ABCD的面积是)A.212cmB.162cmC.242cmD.92cm第6题第8题7.正方形内有一点A,到各边的距离从小到大依次是1、2、3、4,则正方形的周长是()A.10B.20C.24D.258.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF.若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°二.填空题9.如图,矩形ABCD中,AB=3,BC=4,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积是________.第9题第10题第11题10.在正方形ABCD中,E在AB上,BE=2,AE=1,P是BD上的动点,则PE和PA的长度之和最小值为___________.11.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB,AO2为两邻边作平行四边形ABC2O2……依此类推,则平行边形nnABCO的面积为___________.12.如图所示,在口ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.给出下列结论:①△ABM≌△CDN;②AM=13AC;③DN=2NF;④12AMBABCSS△△.其中正确的结论是________.(只填序号)第12题第14题第15题13.已知菱形的两条对角线长分别是6cm,8cm.则菱形的周长是_____cm,面积是____cm2.14.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.15.如图所示,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的F处,若△FDE的周长为8,△FCB的周长为22,则FC的长为________.16.如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,…已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,…Sn(n为正整数),那么第8个正方形面积S8=__________.三.解答题17.如图所示,在四边形ABCD中,∠ABC=90°.CD⊥AD,2222ADCDAB.(1)求证:AB=BC.(2)当BE⊥AD于E时,试证明BE=AE+CD.18.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=___________.19.探究问题:(1)方法感悟:如图,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∠1+∠3=45°.即∠GAF=∠________.又AG=AE,AF=AF∴△GAF≌△________.∴_________=EF,故DE+BF=EF.(2)方法迁移:如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.20.如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.【基础答案与解析】一.选择题1.【答案】B;2.【答案】B;【解析】由勾股定理,可算出平行四边形的高为332,故面积为334632.3.【答案】B;【解析】解:由平行四边形的判定方法可知:若是四边形的对角线互相平分,可证明这个四边形是平行四边形,②不能证明对角线互相平分.故选B.4.【答案】D;5.【答案】A;6.【答案】C;【解析】因为口ABCD的周长为16cm,AD=BC,AB=CD,所以AD+CD=12×16=8(cm).因为O为AC的中点,又因为OE⊥AC于点O,所以AE=EC,所以△DCE的周长为DC+DE+CE=DC+DE+AE=DC+AD=8(cm).7.【答案】C;8.【答案】C;【解析】OE=a,则AD=2a,菱形周长为4×2a=8a.二.填空题9.【答案】45;10.【答案】24;11.【答案】).2,22(;【解析】过D作DH⊥OC于H,则CH=DH=2,所以D的坐标为).2,22(12.【答案】10;【解析】解:∵AB=AC=5,∴∠B=∠C,由DF∥AC,得∠FDB=∠C=∠B,∴FD=FB,同理,得DE=EC.∴四边形AFDE的周长=AF+AE+FD+DE=AF+FB+AE+EC=AB+AC=5+5=10.故答案为10.13.【答案】16;【解析】证△ABE≌△ADF,四边形AECF的面积为正方形ABCD的面积.14.【答案】13;【解析】设BD=x,1412,62xx,所以边长=222313.15.【答案】832cm;43cm;【解析】由题意知△ABC为等边三角形,AE=23,面积为832cm,BD=2AE=43cm.16.【答案】2;3.三.解答题17.【解析】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.18.【解析】证明:∵四边形ABCD是平行四边形.∴AD∥BC,BO=DO,∴∠1=∠2,又∵∠FOD=∠EOB∴△DOF≌△BOE,∴DF=BE,∴AD-DF=BC-BE,即AF=EC,又∵AF∥EC,∴四边形AECF是平行四边形.又∵AE⊥BC,所以∠AEC=90°,∴四边形AECF是矩形.19.【解析】证明:∵DF⊥AE于F,∴∠DFE=90°在矩形ABCD中,∠C=90°,∴∠DFE=∠C,在矩形ABCD中,AD∥BC∴∠ADE=∠DEC,∵AE=AD,∴∠ADE=∠AED,∴∠AED=∠DEC,又∵DE是公共边,∴△DFE≌△DCE,∴DF=DC.20.【解析】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵AE=AF,∴RtRtABEADF△≌△.∴BE=DF.(2)四边形AEMF是菱形.∵四边形
本文标题:平行四边形全章复习与巩固练习
链接地址:https://www.777doc.com/doc-5723840 .html