您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 第十七周二元一次方程组与实际问题及一元一次不等式的方案问题
-1-二元一次方程组解应用题★列方程解应用题的基本关系量⑴行程问题:速度×时间=路程顺水速度=静水速度+水流速度逆水速度=静水速度—水流速度⑵工程问题:工作效率×工作时间=工作量⑶银行利率问题:免税利息=本金×利率×时间⑷浓度问题:溶液×浓度=溶质(以盐水为例,盐水中盐的质量就是溶质;盐水就是溶液)★二元一次方程组解决实际问题的基本步骤1、审:审题,搞清已知量和待求量,分析数量关系.(审题,寻找等量关系)2、列:考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、解:解出方程组,求出未知数的值,得到答案.(解方程组)4、验:检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验)5、答:写出答案.★列方程组解应用题的常见题型⑴和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量⑵产品配套问题:加工总量成比例⑶速度问题:速度×时间=路程⑷航速问题:分为水中航速和风中航速两类①、顺流(风):航速=静水(无风)中的速度+水(风)速②、逆流(风):航速=静水(无风)中的速度-水(风)速⑸工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位-的工程问题⑹增长率问题:原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量⑺银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率=本金×利率×时间×(1-税率)⑻利润问题:利润=售价—进价=进价×利润率,利润率=进价进价—售价×100%⑼盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量⑽数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示⑾几何问题:必须掌握几何图形的性质、周长、面积等计算公式⑿年龄问题:抓住人与人的岁数是同时增长的⒀浓度问题:溶液×浓度=溶质一、和差倍分问题例题、某老翁将一根长草绳剪成前、中、后三段,中段长等于前段长加后段长,后段长等于前段长加中段长的一半,现只知道前段长5m,则该草绳的中段,后段各长多少米?练习1、某检测站要在规定时间内检测一批仪器,原计划每天检测30台这种仪器,则在规定时间内只能检测完总数的七分之三;现在每天实际检测40台,结果不但比原计划提前了一天完成任务,还可以多检测25台.问规定时间是多少天?这批仪器共多少台?2、游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?二、产品配套问题例题:一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?练习1、用白铁皮做罐头盒。每张铁皮可制盒身16个,或制盒底48个,一个盒身与两个盒底配成一套罐头盒。现有150张白铁皮,用多少张制盒身,多少张制盒底,可以刚好配套?2、某服装厂生产某种款式的服装一批,已知每2米布料可做上衣的衣身3个或衣袖5只。现计划用132米这种布料生产这批服装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?-2-三、分配调运问题例题、若干学生住宿,若每间住4人则余20人,若每间住8人,则余2间,问宿舍几间,学生多少人?练习1、一批货物要运往某地,货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货的情况如表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次刚好运完这批货物,问这批货物有多少吨?2、为了防控H7N9型禽流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?四、速度、行程问题例题、一条船顺流航行,每小时行20千米;逆流航行每小时行16千米。那么这条轮船在静水中每小时行多少千米?练习1、从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。甲地到乙地全程是多少?2、甲乙两人分别从甲、乙两地同时相向出发,在甲超过中点50米处甲、乙两人第一次相遇,甲、乙到达乙、甲两地后立即反身往回走,结果甲、乙两人在距甲地100米处第二次相遇,求甲、乙两地的路程。3、在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米.分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?五、工程问题例题、现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个。问甲、乙两人每天各做多少个零件?练习1、甲、乙两人同时加工一批零件,前3小时两人共加工126件,后5小时甲先花了1小时修理工具,因此甲每小时比以前多加工10件,结果在后一段时间内,甲比乙多加工了10件,甲、乙两人原来每小时各加工多少件?2、某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?-3-六、增长率问题例题:某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?练习1、某单位甲,乙两人,去年共分得现金9000元,今年共分得现金12700元.已知今年分得的现金,甲增加50%,乙增加30%.两人今年分得的现金各是多少元?2、为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元.计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求:原计划拆、建面积各是多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?七、银行利率问题有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?八、利润问题例题、五.一期间,某商场搞优惠促销,决定由顾客抽奖决定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付368元,这两面种商品原价之和为500元,问两种商品原价各是多少元?练习1、某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案,(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售进获利最多,你会选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.2、某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件。(1)求A、B两种纪念品的进价分别为多少?(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?3、某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?销售方式直接销售粗加工后销售精加工后销售每吨获利100元250元450元销售方式全部直接销售全部粗加工后销售尽量精加工,剩余部分直接销售获利(元)-4-九、盈亏问题例题、某公司的门票价格规定如下表所列,某校七年级(1),(2)两个班共104人去游公园,其中(1)班人数较少,不到50人,(2)班人数较多,超过50人.经估算,如果两班都以班为单位分别购票,则一共应付1240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱,则两班各有多少名学生?能省多少钱?购票人数1~50人51~100人100人以上票价13元/人11元/人9元/人练习1、某同学在A、B两购物中心发现他看中的运动服的单价相同,球鞋的单价也相同,运动服和球鞋的单价之和为452元,且运动服的单价比球鞋的单价的4倍少8元.(1)求该同学看中的运动服和球鞋的单价各是多少元?(2)某一天,该同学上街,恰好赶上商家促销,A所有的商品打八折销售,B全场每购物满100元返购物券30元销售(不足100元不返券,购物券全场通用,只限于购物),他只带了400元钱.如果他只在一家购物中心购买这两种物品,你能说明他可以选择哪一家购买更省钱吗?还有哪些购买方式?哪种方式更划算?2、在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元.求:(1)A型洗衣机和B型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?3、奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买)0(xx支钢笔需要花y元,请你用含x的代数式表示y;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.十、数字问题例题、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?练习、小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来两个加数分别是多少?十一、几何问题如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?-5-十二、年龄问题例题、今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.练习1、小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的31给我,我就有10颗”,问俩人各有多少颗弹珠?十三、浓度混合问题例题、需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混
本文标题:第十七周二元一次方程组与实际问题及一元一次不等式的方案问题
链接地址:https://www.777doc.com/doc-5734388 .html