您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 数学建模流感问题模型
摘要甲型H1N1流感为急性呼吸道传染病,其病原体是一种新型的甲型H1N1流感病毒,在人群中传播。与以往或目前的季节性流感病毒不同,该病毒毒株包含有猪流感、禽流感和人流感三种流感病毒的基因片段。人群对甲型H1N1流感病毒普遍易感,并可以人传染人,但是要提醒大家的是甲型H1N1流感是可防、可控的。只要积极作好预防,也是比较安全的。目前预防甲型H1N1流感的疫苗已投入使用。本论文通过建立甲流传染模型,分析被传人数多少与哪些因素有关,如何预报传染病高潮的到来,如何处理潜伏期等等问题。甲型H1N1流感问题的研究一﹑模型假设①.在甲流传播期内所考察的地区范围不考虑人口的出生、死亡、流动等种群动力因素。总人口数N(t)不变,人口始终保持一个常数N。人群分为以下三类:易感染者(Susceptibles),其数量比例记为s(t),表示t时刻未染病但有可能被该类疾病传染的人数占总人数的比例;感染病者(Infectives),其数量比例记为i(t),表示t时刻已被感染成为病人而且具有传染力的人数占总人数的比例;潜伏期者(incubation),其数量比例为q(t),表示在t时刻,染病但未被发现、可感染、不可治愈,在潜伏期之后变为感染病者;恢复者(Recovered),其数量比例记为r(t),表示t时刻已从染病者中移出的人数(这部分人既非已感染者,也非感染病者,不具有传染性,也不会再次被感染,他们已退出该传染系统。)占总人数的比例。②.病人的日接触率(每个病人每天有效接触的平均人数)为常数λ,感染者的日接触率(每个感染者每天有效接触的平均人数)为2,日治愈率(每天被治愈的病人占总病人数的比例)为常数μ,显然平均传染期为1/μ,传染期接触数为σ=λ/μ。二﹑模型构成在以上三个基本假设条件下,易感染者从患病到移出的过程框图表示如下:在假设1中显然有:s(t)+i(t)+r(t)+q(t)=1对于病愈免疫的移出者的数量应为rtdNNid(1)不妨设初始时刻的易感染者,染病者,恢复者的比例分别rtdNNidSIR基础模型用微分方程组表示如下:22didtdsdtdrdt1()()qsiisiqsidqsiksqdt(2)上述(2)方程无法求出s(t),i(t)的解析解,我们先做数值计算。三.数值计算在方程(2)中设λ=2,μ=0.4,i(0)=0.01,s(0)=0.99,用MATLAB软件编程:functiony=ill(t,x)a=0.91;b=0.4;c=1.1;d=1;y=[d*x(3)*x(2)-b*x(1),-a*x(1)*x(2)-c*x(2)*x(3),(a-d)*(x(2)*x(1)+x(3)*x(2))]';ts=0:50;x0=[0.02,0.98,0.18];[t,x]=ode45('ill',ts,x0);[t,x];plot(t,x(:,1),'r',t,x(:,2),'g',t,x(:,3),'b');legend('病人','康复者','潜伏期者');pauseplot(x(:,2)+x(:,3),x(:,1));title('病人,潜伏期感染者与康复者相轨线');,四.相频线分析我们在数值计算和图形观察的基础上,利用相轨线讨论解i(t),s(t)的性质。D={(s,i)|s≥0,i≥0,s+i≤1}在方程(2)中消去td并注意到σ的定义,可得11isddsσ00|ssii(3)所以:11isddsσ00i11sisisddsσ(4)利用积分特性容易求出方程(3)的解为:0001()lnsisiss(5)在定义域D内,(4)式表示的曲线即为相轨线,如图3所示.其中箭头表示了随着时间t的增加s(t)和i(t)的变化趋向下面根据(1),(5)式和上图分析s(t),i(t)和r(t)的变化情况(t→∞时它们的极限值分别记作(s,i和r).1.不论初始条件s0,i0如何,病人消失将消失,即:00i2.最终未被感染的健康者的比例是,在(5)式中令i=0得到,是方程0001ln0ssiss在(0,1/σ)内的根.在图形上是相轨线与s轴在(0,1/σ)内交点的横坐标3.若0s1/σ,则开始有11isdodsσ,i(t)先增加,令11isddsσ=0,可得当s=1/σ时,i(t)达到最大值:00011ln)misis(然后s1/σ时,有11isdodsσ,所以i(t)减小且趋于零,s(t)则单调减小至s,如图3中由P1(0s,0i)出发的轨线4.若0s1/σ,则恒有110isddsσ,i(t)单调减小至零,s(t)单调减小至s,如图3中由P2(s0,i0)出发的轨线可以看出,如果仅当病人比例i(t)有一段增长的时期才认为传染病在蔓延,那么1/σ是一个阈值,当0s1/σ(即σ1/s0)时传染病就会蔓延.而减小传染期接触数σ,即提高阈值1/σ使得0s≤1/σ(即σ≤1/0s),传染病就不会蔓延(健康者比例的初始值0s是一定的,通常可认为0s接近1)。并且,即使0s1/σ,从(19),(20)式可以看出,σ减小时,s增加(通过作图分析),mi降低,也控制了蔓延的程度.我们注意到在σ=λμ中,人们的卫生水平越高,日接触率λ越小;医疗水平越高,日治愈率μ越大,于是σ越小,所以提高卫生水平和医疗水平有助于控制传染病的蔓延.从另一方面看,1/ss是传染期内一个病人传染的健康者的平均数,称为交换数,其含义是一病人被s个健康者交换.所以当01/s即01s时必有.既然交换数不超过1,病人比例i(t)绝不会增加,传染病不会蔓延。五﹑群体免疫和预防根据对SIR模型的分析,当01/s时传染病不会蔓延.所以为制止蔓延,除了提高卫生和医疗水平,使阈值1/σ变大以外,另一个途径是降低0s,这可以通过比如预防接种使群体免疫的办法做到.忽略病人比例的初始值0i有001sr,于是传染病不会蔓延的条件01/s可以表为011r这就是说,只要通过群体免疫使初始时刻的移出者比例(即免疫比例)满足上式,就可以制止传染病的蔓延。这种办法生效的前提条件是免疫者要均匀分布在全体人口中,实际上这是很难做到的。据估计当时印度等国天花传染病的接触数σ=5,由上式至少要有80%的人接受免疫才行。世界卫生组织总干事陈冯富珍2010年8月10号宣布,甲型H1N1流感的大流行期已经结束,但世卫呼吁各国继续监察新型流感,防范病毒变种。陈冯富珍听取世卫紧急委员会专家的意见后,宣布解除新流感的最高警戒。但她预期,未来几年新型流感会好像季节性流感一样继续流行,流感病毒也会对部分国家和地区存在隐患。即使花费大量资金提高,也因很难做到免疫者的均匀分布,使得甲流H1N1才在全世界根除。而如果新流感的σ更高,根除就更加困难。六﹑模型验证新型流感2009年4月开始在墨西哥爆发,之后陆续在美国等地蔓延,五月香港确诊首起新型流感个案,为亚洲首宗确诊病例。六月世卫将流感大流行警戒级别,调升至第六级别,世界各地因此储存新流感疫苗,以防万一。不过随着疫情减轻,本年初多个国家及地区,开始销毁疫苗,以及取消为民众接种疫苗。而新型流感爆发以来,在全球造成18449人死亡。死亡相当于移出传染系统,有关部门记录了每天移出者的人数,即有了rtdd的实际数据,世卫组织用这组数据对SIR模型作了验证。首先,由方程(1),(2)可以得到srtddsisisddt1srddst上式两边同时乘以d可,两边积分得0001srsrsrdds0ln|sssr0rses所以:()0()rtstse(6)再0(1)(1)rrtdirsrsed(7)当1/r时,取(7)式右端reTaylor展开式的前3项得:22000(1)2rtsrdrssrd在初始值0r=0下解高阶常微分方程得:0201()(1)()2trtsths其中222000(1)2ssi,01sth从而容易由(7)式得出:22202()2rtdtdsch然后取定参数s0,σ等,画出(7)式的图形,如图4中的曲线,实际数据在图中用圆点表示,可以看出,理论曲线与实际数据吻合得相当不错。七﹑被传染比例的估计在一次传染病的传播过程中,被传染人数的比例是健康者人数比例的初始值0s与s之差,记作x,即0xss(8)当i0很小,s0接近于1时,由(8)式可得01ln(1)0xxs(9)取对数函数Taylor展开的前两项有2001(1)02xxss(10)记01s,可视为该地区人口比例超过阈值1的部分。当1时(10)式给出00122xss(11)这个结果表明,被传染人数比例约为的2倍。对一种传染病,当该地区的卫生和医疗水平不变,即不变时,这个比例就不会改变。而当阈值1提高时,减小,于是这个比例就会降低。八.模型评价1,本模型根据甲流实际传染情况建设了数学模型,并考虑了其中的潜伏期、日治愈率、日接触率等因素,对于如何控制流感爆发具有一定的科学借鉴价值;2,所选取的数值虽然参考了卫生部信息通告,但由于取样的数据量太小,没有大量采集相关的数据,可能导致运算结果有所偏差;3,本篇论文还有很多值得改进的地方,如如何利用数学建模推迟传染病高潮的爆发期、群体免疫和防治等等方面。参考文献:数学模型,姜启源编,高等教育出版社.数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社(1989).数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出版社(1991).数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993).数学建模—韩中庚等编,清华大学出版社(2009)
本文标题:数学建模流感问题模型
链接地址:https://www.777doc.com/doc-5740155 .html