您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 三角函数的应用题试题汇编
第1页(共33页)2016年12月20日三角函数应用题一.解答题(共30小题)1.甲楼楼高50米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距50米,那么甲楼的影子落在乙楼上有多高?(2)小明住在乙楼16m高(地板距地面的距离)的五层楼上,要是冬至中午12时阳光不被挡住,两楼至少距离多少米(结果精确到1m,参考数据:≈1.732)?2.小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)3.如图,现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.6cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上,已知sinα=.(1)求一个矩形卡通图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印,最多能印几个完整的图案?第2页(共33页)4.某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:≈1.41,≈1.73)5.某小区内因道路较窄,实行机动车单向行驶的措施,所以在车位设计上比较人性化.如图是两个车位的设计示意图,按照实际情况每个车位设计成长5m、宽2.4m的矩形,且满足EF、MN与两个车位所占的矩形ABCD场地的BC边形成的夹角为30°,求BC边的长.6.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)7.如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度.(参考数据:sin22°≈,cos22°≈,tan22°≈)8.已知:如图,在△ABC中,AB=6,BC=8,∠B=60°.求:(1)△ABC的面积;第3页(共33页)(2)∠C的余弦值.9.如图,一个水库大坝的横截面是梯形,其横截面的迎水坡AD的坡比为2:3,背水坡BC的坡比为4:3,大坝高DE为20m.坝顶宽CD为45m.求大坝的横截面积.10.我市新农村建设中,对乡村道路进行改造,车溪乡公路有一段斜坡长为20米,坡角∠CBM=45°,坡底路面AB与坡顶路面CD平行,如图①.(1)求坡高CM(结果保留根号);(2)为方便通行,现准备把坡角降为30°,为节约成本,计划把原斜坡BC上的半部分挖去,填到原斜坡BC的下半部分,如图②,点O为原斜坡BC的中点,EF为新斜坡,求原坡顶需要挖掉的长度(即CF的长度,结果精确到0.1米)(参考数据:(,;可以用科学记算器)11.某大型购物中心为方便顾客地铁换乘,准备在底层至B1层之间安装电梯,截面图如图所示,底层与B1层平行,层高AD为9米,A、B间的距离为6米,∠ACD=20°.(1)请问身高1.9米的人在竖直站立的情况下搭乘电梯,在B处会不会碰到头?请说明理由.(2)若采取中段平台设计(如图虚线所示).已知平台EF∥DC,且AE段和FC段的坡度i=1:2,求平台EF的长度.【参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36】第4页(共33页)12.某工厂大楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠BAD=60°,为了防止山体滑坡,保障安全,工厂决定对该土坡进行改造.经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长;(2)为确保安全,工厂计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米?13.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)14.如图,在夕阳西下的傍晚,某人看见高压电线的铁塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡上,为了测得铁塔的高度,他测得铁塔底部B到小山坡脚D的距离为2米,铁塔在小山斜坡上的影长DC为3.4米,斜坡的坡度i=1:1.875,同时他测得自己的影长NH﹦336cm,而他的身长MN为168cm,求铁塔的高度.15.如图,山顶建有一座铁塔,塔高CD=20m,某人在点A处,测得塔底C的仰角为45°,塔顶D的仰角为60°,求山高BC(精确到1m,参考数据:≈1.41,≈1.73)第5页(共33页)16.如图,河对岸有一高层建筑物AB,为测其高,在C处由点D用测量仪测得顶端A的仰角为30°,向高层建筑物前进50米,到达E处,由点F测得顶点A的仰角为45°,已知测量仪高CD=EF=1.2米,求高层建筑物AB的高.(结果精确到0.1米,,)17.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.18.如图所示,当一热气球在点A处时,其探测器显示,从热气球看高楼顶部点B的仰角为45°,看高楼底部点C的俯角为60°,这栋楼高120米,那么热气球与高楼的水平距离为多少米?(结果精确到0.1米,参考数据:)19.如图,大楼AB高16米,远处有一塔CD,某人在楼底B处测得塔顶的仰角为38.5°,爬到楼顶A处测得塔顶的仰角为22°,求塔高CD及大楼与塔之间的距离BD的长.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)第6页(共33页)20.如图,我校九年级某班数学课外活动小组利用周末开展课外实践活动,他们要在佳山公路上测量“佳山”高AB.于是他们采用了下面的方法:在佳山公路上选择了两个观察点C、D(C、D、B在一条直线上),从C处测得山顶A的仰角为30°,在D处测得山顶A的仰角为45°,已知测角仪的高CE与DF的高为1.5m,量得CD=450m.请你帮助他们计算出佳山高AB.(精确到1m,,)21.如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m.(1)求建筑物BC的高度;(2)求旗杆AB的高度.(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)22.如图,小刚同学在綦江南州广场上观测新华书店楼房墙上的电子屏幕CD,点A是小刚的眼睛,测得屏幕下端D处的仰角为30°,然后他正对屏幕方向前进了6米到达B处,又测得该屏幕上端C处的仰角为45°,延长AB与楼房垂直相交于点E,测得BE=21米,请你帮小刚求出该屏幕上端与下端之间的距离CD.(结果保留根号)23.广场上有一个充满氢气的气球P,被广告条拽着悬在空中,甲乙二人分别站在E、F处,他们看气球的仰角分别是30°、45°,E点与F点的高度差AB为1米,水平距离CD为5米,FD的高度为0.5米,请问此气球有多高?第7页(共33页)(结果保留到0.1米)24.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为多少?25.天然气管道铺设工程从B向正东方向进行,如图所示,从B处测得A点位于B点北偏东60°,从B向东前进400m到达D点,在D点测得A点位于北偏东45°方向,以A点为中心,半径为500m的圆形区域为居民住宅区,请计算后回答:天然气管道铺设工程是否会穿过居民住宅区?(≈1.732)26.如图,某公园有一小亭A,它周围100米内是文物保持区,某勘探队员在公园由西向东行走,在B处测得小亭A在北偏东60°的方向上,行走200米后到达C处,此时测得小亭A在北偏东30°的方向上,若该公园打算沿BC的方向修一条笔直的小路,则此小路是否会通过文物保护区?请通过计算说明.27.马航飞机失联后,海空军部队第一时间赴相关海域开展搜寻工作,某舰船在O地修整时发现在它的北偏西60°,距离它40km的A地有一艘搜索船向正东方向航行,经过2小时后,发现此船已到达它东北方向的B处.问搜索船从A处到B处的航速是多少千米/小时(精确到1千米/小时)?(参考数据≈1.414,≈1.732,≈2.236)28.如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D第8页(共33页)在南偏东60°方向,若海监船的速度为50海里/小时,求A,B之间的距离.(取≈1.7,结果精确到0.1海里).29.某船向正东航行,在A处望见灯塔C在东北方向,前进到B处望见灯塔C在北偏西30°,又航行了半小时到D处,望见灯塔C恰在西北方向,若船速为每小时40海里.求A、D两点间的距离.(结果不取近似值)30.如图,某乡村小学有A、B两栋教室,B栋教室在A栋教室正南方向36米处,在A栋教室西南方向300米的C处有一辆拖拉机以每秒8米的速度沿北偏东60°的方向CF行驶,若拖拉机的噪声污染半径为100米,试问A、B两栋教室是否受到拖拉机噪声的影响若有影响,影响的时间有多少秒?(计算过程中取1.7,各步计算结果精确到整数)第9页(共33页)2016年12月20日三角函数应用题参考答案与试题解析一.解答题(共30小题)1.甲楼楼高50米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距50米,那么甲楼的影子落在乙楼上有多高?(2)小明住在乙楼16m高(地板距地面的距离)的五层楼上,要是冬至中午12时阳光不被挡住,两楼至少距离多少米(结果精确到1m,参考数据:≈1.732)?【分析】(1)根据题意得出CD=50m,∠ACD=30°,再利用AD=CDtan30°求出即可;(2)根据题意得出BF=16m,∠ABC=30°,再利用BC=求出即可.【解答】解:(1)如图1,过点C作CD⊥AD于点D,由题意可得出:CD=50m,∠ACD=30°,∴AD=CDtan30°=50×≈29(m),∴甲楼的影子落在乙楼上有:50﹣29=21(m);(2)如图2,过点B作CB⊥AC于点C,由题意可得出:BF=16m,∠ABC=30°,∴AC=50﹣16=34(m),∴BC===34≈59(m),答:要是冬至中午12时阳光不被挡住,两楼至少距离59米.第10页(共33页)【点评】本题考查了特殊角的三角函数值,三角函数值和边长的关系,根据题意画出图形是解题的关键.2.小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热
本文标题:三角函数的应用题试题汇编
链接地址:https://www.777doc.com/doc-5749419 .html