您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 二元一次方程组解应用题总结
二元一次方程组解应用题列方程组解应用题的常见题型(1)和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2)产品配套问题:加工总量成比例(3)速度问题:速度×时间=路程(4)航行问题:此类问题分为水中航行和风中航行两类1.顺流(风):航速=静水(无风)中的速度+水(风)速2.逆流(风):航速=静水(无风)中的速度--水(风)速(5)工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题(6)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量(7)浓度问题:溶液×浓度=溶质(8)银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9)利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%(10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量(11)数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示(12)几何问题:必须掌握几何图形的性质、周长、面积等计算公式(13)年龄问题:解这类问题的基本关系是抓住两个人年龄的增长数相等。年龄问题的主要特点是:时间发生变化,年龄在增长,但是年龄差始终不变。年龄问题往往是“和差”、“差倍”等问题的综合应用(14)分配调运问题(15)方案设计问题一、数字问题例1.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.二、利润问题例1.一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?三、配套问题例1.某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?1(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即ab=甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:abc==甲产品数乙产品数丙产品数.巩固练习:一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?例2某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告,15秒广告每播一次收费0.6万元,30秒广告每播一次收费1万元,若要求每种广告播放不少于2次(1)种广告的播放次数有几种安排方式(2)电视台选择哪种播放方式收益较大【巩固】某电脑公司有A、B、C三种型号的电脑,价格分别为A型每台6000元,B型每台4000元,C型每台2500元。东坡中学计划将100500元钱全部用于从该公司购进电脑,总共要其中两种不同型号的电脑36台。请你设计几种购买方案供该校选择,并说明理由。四、行程问题例1:甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。二人的平均速度各是多少?解:设甲每小时走x千米,乙每小时走y千米例2:在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米.分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?2点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题例1.某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?六、工程问题例1.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?七、倍数问题例1某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加工厂1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?八、浓度分配问题例1:要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?九、和差倍问题例1:一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?例2:甲乙二人若乙给甲10元则甲所有的钱为乙的3倍若甲给乙10元则甲所有的钱为乙的2倍多10元求甲乙各拥有多少钱3十、增长率问题例1:某人装修房屋原预算25000元。装修时因材料费下降了20%工资涨了10%,实际用去21500元。求原来材料费及工资各是多少元。例2:某单位甲、乙两人去年共分得现金9000元今年共分得现金12700元.已知今年分得的现金甲增加50%,乙增加30%,两人今年分得的现金各是多少元十一、航行问题例:AB两地相距1200km,一条船顺流航行需2小时30分逆流航行需3小时20分求飞机的平均速度和风速。十二、年龄问题.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁?练习:1,父子的年龄差30岁,五年后父亲的年龄正好是儿子的3倍,问今年父亲和儿子各是多少岁?2现在父亲的年龄是儿子年龄的3倍,7年前父亲的年龄是儿子年龄的5倍,问父亲、儿子现在的年龄分别是多少岁?十三、方案设计问题【例1】项王故里的门票价格规定如下表:购票人数1~5051~100100人以上每人门票(元)5元4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班去游项王故里的人数,如果两班都以班为单位分别购票,一共需付486元.)⑴如果两班联合起来,作为一个团体购票,则可以节约多少元钱?⑵两班各有多少名学生?【巩固】团体购买公园门票票价如下:(注意和例题表述的不同)购票人数1~5051~100100人以上每人门票(元)13元11元9元今有甲、乙两个旅行团,已知甲团人数少于50人,乙团人数不超过100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元.⑴请你判断乙团的人数是否也少于50人.⑵求甲、乙两旅行团各有多少人?【例2】某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.⑴若商场同时购进两种不同型号的电视机50台,共付9万元,请探究一下商场的进货方案;⑵若商场销售一台甲种电视机可获利150元,销售一乙种电视机可获利200元,销售一台丙种视机可获利250元.在同时购进两种不同电视机的方案中,哪种能使获利最大?⑶若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案4
本文标题:二元一次方程组解应用题总结
链接地址:https://www.777doc.com/doc-5751413 .html