您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 含参一元二次不等式专项训练
含参一元二次不等式专题训练解答题(共12小题)1.已知不等式(ax﹣1)(x+1)<0(a∈R).2.解关于x的不等式:x2+(a+1)x+a>0(a是实数).(1)若x=a时不等式成立,求a的取值范围;(2)当a≠0时,解这个关于x的不等式.3.解关于x的不等式ax2+2x﹣1<0(a>0).4.解关于x的不等式,(a∈R):(1)ax2﹣2(a+1)x+4>0;(2)x2﹣2ax+2≤0.5.求x的取值范围:(x+2)(x﹣a)>0.6.当a>﹣1时,解不等式x2﹣(a+1)x﹣2a2﹣a≥0.7.解关于x的不等式(x﹣1)(ax﹣2)>0.8.解关于x的不等式,其中a≠0.9.解不等式:mx2+(m﹣2)x﹣2<0.10.解下列不等式:(1)ax2+2ax+4≤0;(2)(a﹣2)x2﹣(4a﹣3)x+(4a+2)≥0.11.解关于x的不等式ax2﹣(a+1)x+1<0.12.解关于x的不等式ax2﹣2≥2x﹣ax(a∈R).含参一元二次不等式专题训练参考答案与试题解析一.解答题(共12小题)1.(2009•如皋市模拟)已知不等式(ax﹣1)(x+1)<0(a∈R).(1)若x=a时不等式成立,求a的取值范围;(2)当a≠0时,解这个关于x的不等式.考点:一元二次不等式的解法.菁优网版权所有专题:计算题;综合题;分类讨论;转化思想.分析:(1)若x=a时不等式成立,不等式转化为关于a的不等式,直接求a的取值范围;(2)当a≠0时,当a>0、﹣1<a<0、a<﹣1三种情况下,比较的大小关系即可解这个关于x的不等式.解答:解:(1)由x=a时不等式成立,即(a2﹣1)(a+1)<0,所以(a+1)2(a﹣1)<0,所以a<1且a≠﹣1.所以a的取值范围为(﹣∞,﹣1)∪(﹣1,1).(6分)(2)当a>0时,,所以不等式的解:;当﹣1<a<0时,,所以不等式(ax﹣1)(x+1)<0的解:或x<﹣1;当a<﹣1时,,所以不等式的解:x<﹣1或.当a=﹣1时,不等式的解:x<﹣1或x>﹣1综上:当a>0时,所以不等式的解:;当﹣1<a<0时,所以不等式的解:或x>﹣1;当a≤﹣1时,所以不等式的解:x<﹣1或.(15分)点评:本题考查一元二次不等式的解法,考查转化思想,分类讨论思想,是中档题.2.解关于x的不等式:x2+(a+1)x+a>0(a是实数).考点:一元二次不等式的解法.菁优网版权所有专题:不等式的解法及应用.分析:x2+(a+1)x+a>0(a是实数).可化为(x+a)(x+1)>0.对a与1的大小分类讨论即可得出.解答:解:x2+(a+1)x+a>0(a是实数)可化为(x+a)(x+1)>0.当a>1时,不等式的解集为{x|x>﹣1或x<﹣a};当a<1时,不等式的解集为{x|x>﹣a或x<﹣1};当a=1时,不等式的解集为{x|x≠﹣1}.点评:本题考查了一元二次不等式的解法、分类讨论的方法,属于基础题.3.解关于x的不等式ax2+2x﹣1<0(a>0).考点:一元二次不等式的解法.菁优网版权所有专题:不等式的解法及应用.分析:由a>0,得△>0,求出对应方程ax2+2x﹣1=0的两根,即可写出不等式的解集.解答:解:∵a>0,∴△=4+4a>0,且方程ax2+2x﹣1=0的两根为x1=,x2=,且x1<x2;∴不等式的解集为{x|<x<}.点评:本题考查了不等式的解法与应用问题,解题时应按照解一元二次不等式的步骤进行解答即可,是基础题.4.解关于x的不等式,(a∈R):(1)ax2﹣2(a+1)x+4>0;(2)x2﹣2ax+2≤0.考点:一元二次不等式的解法.菁优网版权所有专题:计算题;不等式的解法及应用.分析:(1)分a=0,a>0,a<0三种情况进行讨论:a=0,a<0两种情况易解;a>0时,由对应方程的两根大小关系再分三种情况讨论即可;(2)按照△=4a2﹣8的符号分三种情况讨论即可解得;解答:解:(1)ax2﹣2(a+1)x+4>0可化为(ax﹣2)(x﹣2)>0,(i)当a=0时,不等式可化为x﹣2<0,不等式的解集为{x|x<2};(ii)当a>0时,不等式可化为(x﹣)(x﹣2)>0,①若,即0<a<1时,不等式的解集为{x|x<2或x>};②若=2,即a=1时,不等式的解集为{x|x≠2};③若,即a>1时,不等式的解集为{x|x<或x>2}.(iii)当a<0时,不等式可化为(x﹣)(x﹣2)<0,不等式的解集为{x|<x<2}.综上,a=0时,不等式的解集为{x|x<2};0<a<1时,不等式的解集为{x|x<2或x>};a=1时,不等式的解集为{x|x≠2};a>1时,不等式的解集为{x|x<或x>2};a<0时,不等式的解集为{x|<x<2}.(2)x2﹣2ax+2≤0,△=4a2﹣8,①当△<0,即﹣a时,不等式的解集为∅;②当△=0,即a=时,不等式的解集为{x|x=a};③当△>0,即a<﹣或a>时,不等式的解集为[x|a﹣≤x≤a}.综上,﹣a时,不等式的解集为∅;a=时,不等式的解集为{x|x=a};a<﹣或a>时,不等式的解集为[x|a﹣≤x≤a}.点评:该题考查含参数的一元二次不等式的解法,考查分类讨论思想,若二次系数为参数,要按照二次系数的符号讨论;若△符号不确定,要按△符号讨论;若△>0,要按照两根大小讨论.属中档题.5.求x的取值范围:(x+2)(x﹣a)>0.考点:一元二次不等式的解法.菁优网版权所有专题:不等式的解法及应用.分析:通过对a分类讨论,利用一元二次不等式的解法即可得出.解答:解:①当a=﹣2时,不等式(x+2)(x﹣a)>0化为(x+2)2>0,解得x≠﹣2,其解集为{x|x∈R,且x≠1}.②当a>﹣2时,由不等式(x+2)(x﹣a)>0,解得x<﹣2或x>a,其解集为{x|x<﹣2或x>a}.③当a<﹣2时,由不等式(x+2)(x﹣a)>0,解得x<a或x>﹣2,其解集为{x|x<a或x>﹣2}.综上可得:①当a=﹣2时,原不等式的解集为{x|x∈R,且x≠1}.②当a>﹣2时,原不等式的解集为{x|x<﹣2或x>a}.③当a<﹣2时,原不等式的解集为{x|x<a或x>﹣2}.点评:本题考查了一元二次不等式的解法和分类讨论的方法,属于基础题.6.当a>﹣1时,解不等式x2﹣(a+1)x﹣2a2﹣a≥0.考点:一元二次不等式的解法.菁优网版权所有专题:分类讨论;不等式的解法及应用.分析:把不等式x2﹣(a+1)x﹣2a2﹣a≥0化为(x+a)[x﹣(2a+1)]≥0,讨论a的取值,写出对应不等式的解集.解答:解:不等式x2﹣(a+1)x﹣2a2﹣a≥0可化为(x+a)[x﹣(2a+1)]≥0,∵a>﹣1,∴﹣a<1,2a+1>﹣1;当﹣a=2a+1,即a=﹣时,不等式的解集是R;当﹣a>2a+1,即﹣1<a<﹣时,不等式的解集是{x|x≤2a+1,或x≥﹣a};当﹣a<2a+1,即a>﹣时,不等式的解集是{x|x≤﹣a,或x≥2a+1}.∴a=﹣时,不等式的解集是R;﹣1<a<﹣时,不等式的解集是{x|x≤2a+1,或x≥﹣a};a>﹣时,不等式的解集是{x|x≤﹣a,或x≥2a+1}.点评:本题考查了含有字母系数的不等式的解法问题,解题时应在适当地时候,对字母系数进行讨论,是基础题.7.解关于x的不等式(x﹣1)(ax﹣2)>0.考点:一元二次不等式的解法.菁优网版权所有专题:不等式的解法及应用.分析:通过对a分类讨论,利用一元二次不等式的解法即可得出解集.解答:解:①当a=0时,不等式(x﹣1)(ax﹣2)>0化为﹣2(x﹣1)>0,即x﹣1<0,解得x<1,因此解集为{x|x<1}.②当a>0时,原不等式化为.当a>2时,则,∴不等式(x﹣1)(x﹣)>0的解集是{x|x>1或x}.当a=2时,=1,∴不等式化为(x﹣1)2>0的解集是{x|x≠1}.当0<a<2时,则,∴不等式(x﹣1)(x﹣)>0的解集是{x|x<1或x}.③当a<0时,原不等式化为,则,∴不等式(x﹣1)(x﹣)<0的解集是{x|x<1}.综上可知::①当a=0时,不等式的解集为{x|x<1}.②当a>0时,不等式的解集是{x|x>1或x}.当a=2时,不等式的解集是{x|x≠1}.当0<a<2时,不等式的解集是{x|x<1或x}.③当a<0时,不等式的解集是{x|x<1}.点评:本题考查了分类讨论方法、一元二次不等式的解法,属于中档题.8.解关于x的不等式,其中a≠0.考点:一元二次不等式的解法.菁优网版权所有专题:不等式的解法及应用.分析:方程,其中a≠0两根为1,,对两根大小分类讨论求解.解答:解:当a<0时,,不等式的解集为…(3分)当0<a<1时,,不等式的解集为…(6分)当a=1时,,不等式的解集为ϕ…(9分)当a>1时,,不等式的解集为…(11分)综上所述:当a<0时,或a>1,原不等式的解集为当0<a<1时,原不等式的解集为当a=1时,原不等式的解集为ϕ…(12分)点评:本题主要考查了一元二次不等式的解法,其中主要考查了分类讨论的思想在解题中的应用.9.解不等式:mx2+(m﹣2)x﹣2<0.考点:一元二次不等式的解法.菁优网版权所有专题:分类讨论;不等式的解法及应用.分析:把不等式等价变形为(x+1)(mx﹣2)<0,讨论m的取值,从而求出不等式的解集.解答:解:原不等式可化为(x+1)(mx﹣2)<0,当m=0时,不等式为﹣2(x+1)<0,此时解得x>﹣1.当m≠0,则不等式等价为m(x+1)(x﹣)<0.若m>0,则不等式等价为(x+1)(x﹣)<0,对应方程的两个根为﹣1,,此时不等式的解为﹣1<x<.若m<0.则不等式等价为(x+1)(x﹣)>0,对应方程的两个根为﹣1,.若﹣1=,解得m=﹣2,此时不等式为(x+1)2>0,此时x≠﹣1.若﹣2<m<0时,<﹣1,此时不等式的解为x>﹣1或x<.若m<﹣2时,>﹣1,此时不等式的解为x<﹣1或x>.综上:m>0时,不等式的解集为{x|﹣1<x<},m=0时,不等式的解集为{x|x>﹣1};m=﹣2,不等式的解集为{x|x≠﹣1};﹣2<m<0,不等式的解集为{x|x>﹣1或x<};m<﹣2,不等式的解集为{m|x<﹣1或x>}.点评:本题考查了含有参数的一元二次不等式的解法问题,解题时应对参数进行分类讨论,是易错题.10.解下列不等式:(1)ax2+2ax+4≤0;(2)(a﹣2)x2﹣(4a﹣3)x+(4a+2)≥0.考点:一元二次不等式的解法.菁优网版权所有专题:不等式的解法及应用.分析:(1)通过对a和△分类讨论,利用一元二次不等式的解法即可解出;(2)通过对a分类讨论,利用一元二次不等式的解法即可得出.解答:解:(1)①当a=0时,原不等式可化为4≤0,不成立,应舍去.②当a≠0时,△=4a2﹣16a.当a=4时,△=0,原不等式可化为(x+1)2≤0,解得x=﹣1,此时原不等式的解集为{﹣1};当△<0时,解得0<a<4.此时原不等式的解集为∅.当△>0时,解得a>4或a<0.由ax2+2ax+4=0,解得=,当a>4时,原不等式的解集为{x|};当a<0时,原不等式的解集为{x|x≥或}.综上可得:当a=4时,不等式的解集为{﹣1};当△<0时,不等式的解集为∅.当△>0时,当a>4时,不等式的解集为{x|};当a<0时,不等式的解集为{x|x≥或}.(2)①当a=2时,原不等式化为﹣5x+10≥0,解得x≤2,此时不等式的解集为{x|x≤2};②当a≠2时,△=25.此时不等式化为[(a﹣2)x﹣(2a+1)](x﹣2)≥0,当a>2时,化为,此时,因此不等式的解集为{x|x≥或x≤2};当a<2时,,此时不等式化为,不等式的解集为{x|}.综上可得:①当a=2时,不等式的解集为{x|x≤2};②当a>2时,不等式的解集为{x|x≥或x≤2};当a<2时,不等式的解集为{x|}.点评:本题考查了分类讨论、一元二次不等式的解法,考查了计算能力,属于难题.11.
本文标题:含参一元二次不等式专项训练
链接地址:https://www.777doc.com/doc-5753978 .html