您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2012届高三数学一轮复习立体几何练习题4
第9章第4节一、选择题1.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2[答案]B[解析]如图(1),α∩β=l,m∥l,l1∥l,满足m∥β且l1∥α,故排除A;如图(2),α∩β=l,m∥n∥l,满足m∥β,n∥β,故排除C.在图(2)中,m∥n∥l∥l2满足m∥β,n∥l2,故排除D,故选B.[点评]∵l1与l2相交,m∥l1,n∥l2,∴m与n相交,由面面平行的判定定理可知α∥β;但当m、n⊂α,l1,l2⊂β,l1与l2相交,α∥β时,如图(3),得不出m∥l1且n∥l2.(理)设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β[答案]C[解析]对于A,如图正方体α、β分别为平面ABCD与平面ADD1A1,a、b分别为直线B1B和C1C.a与b也可能平行,对于B,∵a⊥α,α∥β,∴a⊥β,又b⊥β,∴a∥b,对于D,a与b也可能平行,故选C.2.(2010·郑州检测)已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有()A.0个B.1个C.2个D.3个[答案]C[解析]依题意得,命题“a∥b,且a⊥γ⇒b⊥γ”是真命题(由“若两条平行线中的一条与一个平面垂直,则另一条也与这个平面垂直”可知);命题“a∥β,且a⊥c⇒β⊥c”是假命题(直线c可能位于平面β内,此时结论不成立);命题“α∥b,且α⊥c⇒b⊥c”是真命题(因为α∥b,因此在平面α内必存在直线b1∥b;又α⊥c,因此c∥b1,c⊥b).综上所述,其中真命题共有2个,选C.3.(2010·东北三校模拟)正方体ABCD-A1B1C1D1中,M,N,P分别为A1B1,CD,B1C1的中点,则下列命题正确的是()A.AM与PC是异面直线B.AM⊥PCC.AM∥平面BC1ND.四边形AMC1N为正方形[答案]C[解析]连接MP,AC,A1C1,AM,C1N,由题易知MP∥A1C1∥AC,且MP=12AC,所以AM与PC是相交直线,假设AM⊥PC,∵BC⊥平面ABB1A1,∴BC⊥AM,∴AM⊥平面BCC1B1,又AB⊥平面BCC1B1矛盾,∴AM与PC不垂直.因为AM∥C1N,C1N⊂平面BC1N,所以AM∥平面BC1N.又易得四边形AMC1N为菱形而不是正方形,故选C.4.(文)对两条不相交的空间直线a与b,必存在平面α,使得()A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α[答案]B[解析]a、b异面时,A错,C错;若D正确,则必有a⊥b,故排除A、C、D,选B.(理)设a、b为两条直线,α、β为两个平面.下列四个命题中,正确的命题是()A.若a、b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b[答案]D[解析]若直线a、b与α成等角,则a、b平行、相交或异面;对选项B,如a∥α,b∥β,α∥β,则a、b平行、相交或异面;对选项C,若a⊂α,b⊂β,a∥b,则α、β平行或相交;对选项D,由a⊥αβ⊥α⇒a∥β或a⊂β,无论哪种情形,由b⊥β都有b⊥a.,故选D.5.一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB⊥EF②AB与CM成60°③EF与MN是异面直线④MN∥CD其中正确的是()A.①②B.③④C.②③D.①③[答案]D[解析]本题考查学生的空间想象能力,将其还原成正方体如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD.只有①③正确,故选D.6.(文)(2010·山东潍坊)已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥α,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β[答案]D[解析]对于选项A,两平面β、γ同垂直于平面α,平面β与平面γ可能平行,也可能相交;对于选项B,平面α、β可能平行,也可能相交;对于选项C,直线n可能与平面α平行,也可能在平面α内;对于选项D,∵m∥n,m⊥α,∴n⊥α,又n⊥β,∴α∥β,故选D.(理)(2010·曲师大附中)已知两个不同的平面α,β和两条不重合的直线a,b,则下列四个命题中为真命题的是()A.若a∥b,b⊂α,则a∥αB.若α⊥β,α∩β=b,a⊥b,则a⊥βC.若a⊂α,b⊂α,a∥β,b∥β,则α∥βD.若α∥β,a⊄α,a⊄β,a∥α,则a∥β[答案]D[解析]选项A中,直线a可能在平面α内;选项B中,直线a可能在平面β内;选项C中,直线a,b为相交直线时命题才成立.7.(2010·江苏南通)在正方体ABCD-A1B1C1D1中,P、Q分别是棱AA1、CC1的中点,则过点B、P、Q的截面是()A.邻边不等的平行四边形B.菱形但不是正方形C.邻边不等的矩形D.正方形[答案]B[解析]设正方体棱长为1,连结D1P,D1Q,则易得PB=PQ=D1P=D1Q=52,取D1D的中点M,则D1P綊AM綊BQ,故截面为四边形PBQD1,它是一个菱形,又PQ=AC=2,∴∠PBQ不是直角,故选B.8.(文)(2010·山东日照、聊城模考)已知直线l、m,平面α、β,且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β;其中真命题是()A.①②B.①③C.①④D.②④[答案]C[解析][点评]如图,α∩β=m,则l⊥m,故(2)假;在上述图形中,当α⊥β时,知③假.(理)(2010·福建福州市)对于平面α和共面的直线m,n,下列命题是真命题的是()A.若m,n与α所成的角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m⊥α,m⊥n,则n∥αD.若m⊂α,n∥α,则m∥n[答案]D[解析]正三棱锥P-ABC的侧棱PA、PB与底面成角相等,但PA与PB相交应排除A;若m∥α,n∥α,则m与n平行、相交或异面,应排除B;若m⊥α,m⊥n,则n∥α或n⊂α,应排除C.∵m、n共面,设经过m、n的平面为β,∵m⊂α,∴α∩β=m,∵n∥α,∴n∥m,故D正确.9.(文)(2010·北京顺义一中月考)已知l是直线,α、β是两个不同平面,下列命题中的真命题是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α⊥βD.若l∥α,α∥β,则l∥β[答案]C[解析]如图在正方体ABCD-A1B1C1D1中,取平面ABD1A1为α,平面ABCD为β,B1C1为l,则排除A、B;又取平面ADD1A1为α,平面BCC1B1为β,B1C1为l,排除D.(理)(2010·广东罗湖区调研)已知相异直线a,b和不重合平面α,β,则a∥b的一个充分条件是()A.a∥α,b∥αB.a∥α,b∥β,α∥βC.a⊥α,b⊥β,α∥βD.α⊥β,a⊥α,b∥β[答案]C[解析]a∥α,b∥α时,a与b可相交可异面也可平行,故A错;a∥α,b∥β,α∥β时,a与b可异面,故B错;由α⊥β,a⊥α得,a∥β或a⊂β,又b∥β,此时a与b可平行也可异面,排除D.10.(2010·日照实验高中)如图,正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M,N分别在AD1,BC上移动,且始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图象大致是()[答案]C[解析]过M作ME⊥AD于E,连接EN,则平面MEN∥平面DCC1D1,所以BN=AE=x(0≤x1),ME=2x,MN2=ME2+EN2,则y2=4x2+1,y2-4x2=1(0≤x1,y0),图象应是焦点在y轴上的双曲线的一部分.故选C.二、填空题11.(文)如图,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.[答案]M∈线段FH[解析]因为HN∥BD,HF∥DD1,所以平面NHF∥平面B1BDD1,又平面NHF∩平面EFGH=FH.故线段FH上任意点M与N相连,有MN∥平面B1BDD1,故填M∈线段FH.(理)(2010·南充市模拟)已知两异面直线a,b所成的角为π3,直线l分别与a,b所成的角都是θ,则θ的取值范围是________.[答案][π6,π2]12.在四面体ABCD中,M、N分别是△ACD、△BCD的重心,则四面体的四个面中与MN平行的是________.[答案]面ABC和面ABD[解析]连结AM并延长交CD于点E,∵M为△ACD的重心,∴E为CD的中点,又N为△BCD的重心,∴B、N、E三点共线,由EMMA=ENNB=12得MN∥AB,因此MN∥平面ABC,MN∥平面ABD.13.如图是一正方体的表面展开图,B、N、Q都是所在棱的中点,则在原正方体中,①AB与CD相交;②MN∥PQ;③AB∥PE;④MN与CD异面;⑤MN∥平面PQC.其中真命题的序号是________.[答案]①②④⑤[解析]将正方体还原后如图,则N与B重合,A与C重合,E与D重合,∴①、②、④、⑤为真命题.14.如图所示,正方体ABCD-A1B1C1D1的棱长为a,点P是棱AD上一点,且AP=a3,过B1,D1,P的平面交底面ABCD于PQ,Q在直线CD上,则PQ=________.[答案]223a[解析]∵B1D1∥平面ABCD,平面B1D1P∩平面ABCD=PQ,∴B1D1∥PQ,又B1D1∥BD,∴BD∥PQ,设PQ∩AB=M,∵AB∥CD,∴△APM∽△DPQ,∴PQPM=PDAP=2,即PQ=2PM,又△APM∽△ADP,∴PMBD=APAD=13,∴PM=13BD,又BD=2a,∴PQ=223a.三、解答题15.(文)(2010·南京调研)如图,在四棱锥E-ABCD中,四边形ABCD为平行四边形,BE=EC,AE⊥BE,M为CE上一点,且BM⊥平面ACE.(1)求证:AE⊥BC;(2)如果点N为线段AB的中点,求证:MN∥平面ADE.[解析](1)因为BM⊥平面ACE,AE⊂平面ACE,所以BM⊥AE.因为AE⊥BE,且BE∩BM=B,BE、BM⊂平面EBC,所以AE⊥平面EBC.因为BC⊂平面EBC,所以AE⊥BC.(2)解法1:取DE中点H,连接MH、AH.因为BM⊥平面ACE,EC⊂平面ACE,所以BM⊥EC.因为BE=BC,所以M为CE的中点.所以MH为△EDC的中位线,所以MH綊12DC.因为四边形ABCD为平行四边形,所以DC綊AB.故MH綊12AB.因为N为AB的中点,所以MH綊AN.所以四边形ANMH为平行四边形,所以MN∥AH.因为MN⊄平面ADE,AH⊂平面ADE,所以MN∥平面ADE.解法2:取EB的中点F,连接MF、NF.因为BM⊥平面ACE,EC⊂平面ACE,所以BM⊥EC.因为BE=BC,所以M为CE的中点,所以MF∥BC.因为N为AB的中点,所以NF∥AE,因为四边形ABCD为平行四边形,所以AD∥BC.所以MF∥AD.因为NF、MF⊄平面ADE,AD、AE⊂平面ADE,所以NF∥平面ADE,MF∥平面ADE.因为MF∩NF=F,MF、NF⊂平面MNF,所以平面MNF∥平面ADE.因为MN⊂平面MNF,所以MN∥平面ADE.(理)(2010·厦门市质检)如图所示的几何体中,△ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点.(1)若点G在AB上,试确定G点位置,使FG∥平面ADE,并加以证明
本文标题:2012届高三数学一轮复习立体几何练习题4
链接地址:https://www.777doc.com/doc-5759545 .html