您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2018年天津数学文科高考试题及答案word版历年数学高考试题
海量资源尽在星星文库:参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分40分.(1)C(2)C(3)A(4)B(5)D(6)A(7)A(8)C二、填空题:本题考查基本知识和基本运算.每小题5分,满分30分.(9)4–i(10)e(11)13(12)2220xyx(13)14(14)[18,2]三、解答题(15)本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.满分13分.(Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)解:从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii)解:由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.学@科网所以,事件M发生的概率为P(M)=521.(16)本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分.(Ⅰ)解:在△ABC中,由正弦定理sinsinabAB,可得sinsinbAaB,又由πsincos()6bAaB,得πsincos()6aBaB,即πsincos()6BB,可得tan3B.又因为(0π)B,,可得B=π3.(Ⅱ)解:在△ABC中,由余弦定理及a=2,c=3,B=π3,有2222cos7bacacB,故b=7.由πsincos()6bAaB,可得3sin7A.因为ac,故2cos7A.因此43sin22sincos7AAA,21cos22cos17AA.海量资源尽在星星文库:所以,sin(2)sin2coscos2sinABABAB4311333727214.(17)本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.满分13分.(Ⅰ)由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)解:取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM=22=13ADAM.因为AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN=22=13ADAN.在等腰三角形DMN中,MN=1,可得1132cos26MNDMNDM.所以,异面直线BC与MD所成角的余弦值为1326.(Ⅲ)解:连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=3.又因为平面ABC⊥平面ABD,而CM平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD=22ACAD=4.在Rt△CMD中,3sin4CMCDMCD.所以,直线CD与平面ABD所成角的正弦值为34.(18)本小题主要考查等差数列、等比数列的通项公式及前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.满分13分.(I)解:设等比数列{}nb的公比为q,由b1=1,b3=b2+2,可得220qq.因为0q,可得2q,故12nnb.所以122112nnnT.设等差数列{}na的公差为d.由435baa,可得134ad.由5462baa,可得131316,ad从而海量资源尽在星星文库:,故nan,所以(1)2nnnS.(II)解:由(I),知13112(222)22.nnnTTTnn由12()4nnnnSTTTab可得11(1)2222nnnnnn,整理得2340,nn解得1n(舍),或4n.所以n的值为4.学&科网(19)本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.(I)解:设椭圆的焦距为2c,由已知得2259ca,又由222abc,可得23.ab由22||13ABab,从而3,2ab.所以,椭圆的方程为22194xy.(II)解:设点P的坐标为11(,)xy,点M的坐标为22(,)xy,由题意,210xx,点Q的坐标为11(,).xy由BPM△的面积是BPQ△面积的2倍,可得||=2||PMPQ,从而21112[()]xxxx,即215xx.易知直线AB的方程为236xy,由方程组236,,xyykx消去y,可得2632xk.由方程组221,94,xyykx消去y,可得12694xk.由215xx,可得2945(32)kk,两边平方,整理得2182580kk,解得89k,或12k.当89k时,290x,不合题意,舍去;当12k时,212x,1125x,符合题意.所以,k的值为12.(20)本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能量,满分14分.(Ⅰ)解:由已知,可得f(x)=x(x−1)(x+1)=x3−x,故f‵(x)=3x−1,因此f(0)=0,(0)f=−1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y−f(0)=(0)f(x−0),故所求切线方程为x+y=0.(Ⅱ)解:由已知可得海量资源尽在星星文库:(x)=(x−t2+3)(x−t2)(x−t2−3)=(x−t2)3−9(x−t2)=x3−3t2x2+(3t22−9)x−t22+9t2.故()fx=3x3−6t2x+3t22−9.令()fx=0,解得x=t2−3,或x=t2+3.当x变化时,f‵(x),f(x)的变化如下表:x(−∞,t2−3)t2−3(t2−3,t2+3)t2+3(t2+3,+∞)()fx+0−0+f(x)↗极大值↘极小值↗所以函数f(x)的极大值为f(t2−3)=(−3)3−9×(−3)=63;函数小值为f(t2+3)=(3)3−9×(3)=−63.(III)解:曲线y=f(x)与直线y=−(x−t2)−63有三个互异的公共点等价于关于x的方程(x−t2+d)(x−t2)(x−t2−d)+(x−t2)+63=0有三个互异的实数解,令u=x−t2,可得u3+(1−d2)u+63=0.设函数g(x)=x3+(1−d2)x+63,则曲线y=f(x)与直线y=−(x−t2)−63有三个互异的公共点等价于函数y=g(x)有三个零点.()g'x=3x3+(1−d2).当d2≤1时,()g'x≥0,这时()g'x在R上单调递增,不合题意.当d21时,()g'x=0,解得x1=213d,x2=213d.易得,g(x)在(−∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增,g(x)的极大值g(x1)=g(213d)=32223(1)639d0.g(x)的极小值g(x2)=g(213d)=−32223(1)639d.若g(x2)≥0,由g(x)的单调性可知函数y=f(x)至多有两个零点,不合题意.若2()0,gx即322(1)27d,也就是||10d,此时2||dx,(||)||630,gdd且312||,(2||)6||2||636210630dxgddd,从而由()gx的单调性,可知函数()ygx在区间1122(2||,),(,),(,||)dxxxxd内各有一个零点,符合题意.学科……网所以d的取值范围是(,10)(10,).
本文标题:2018年天津数学文科高考试题及答案word版历年数学高考试题
链接地址:https://www.777doc.com/doc-5762630 .html