您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 人教A版高中数学选修11单元质量评估三Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。单元质量评估(三)第三章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·台州高二检测)函数y=lgx的导数为()A.B.ln10C.D.【解析】选C.因为(logax)′=,所以(lgx)′=.2.(2016·泉州高二检测)已知f(x)=sinx+lnx,则f′(1)的值为()A.1-cos1B.1+cos1C.-1+cos1D.-1-cos1【解析】选B.f′(x)=cosx+,f′(1)=cos1+1.3.设f(x)=x2(2-x),则f(x)的单调递增区间是()A.B.C.(-∞,0)D.(-∞,0)∪【解析】选A.f(x)=2x2-x3,f′(x)=4x-3x2,由f′(x)0得0x.4.已知物体的运动方程是s=t3-4t2+12t(t表示时间,s表示位移),则瞬时速度为0的时刻是()A.0秒、2秒或6秒B.2秒或16秒C.2秒、8秒或16秒D.2秒或6秒【解析】选D.s′=t2-8t+12=0,解得t=2或t=6.5.函数y=2x3-2x2在上的最大值为()A.-5B.0C.-1D.8【解析】选D.y′=6x2-4x=2x(3x-2),列表:x-1(-1,0)02y′+-+y-4↗0↘-↗8所以ymax=8.6.(2016·临沂高二检测)曲线y=3lnx+x+2在点P0处的切线方程为4x-y-1=0,则点P0的坐标是()A.(0,1)B.(1,-1)C.(1,3)D.(1,0)【解析】选C.f′(x)=+1.设P0(x0,y0),则+1=4,解得x0=1.因为(x0,y0)在直线4x-y-1=0上,所以y0=3.所以点P0的坐标为(1,3).7.若x=1是函数f(x)=(ax-2)·ex的一个极值点,则a的值为()A.1B.2C.eD.5【解析】选A.因为f′(x)=aex+(ax-2)ex,所以f′(1)=ae+(a-2)e=0,解得:a=1,把a=1代入函数得:f(x)=(x-2)·ex,所以f′(x)=ex+(x-2)ex=ex(x-1),所以f′(1)=0,且x1时,f′(x)0,x1时,f′(x)0.故a=1符合题意.8.做一个无盖的圆柱形水桶,若要使其体积是27π且用料最省,则圆柱的底面半径为()A.5B.6C.3D.2【解析】选C.设圆柱的底面半径为R,母线长为l,则V=πR2l=27π,所以l=.要使用料最省,只需使水桶的表面积最小,而S表=πR2+2πRl=πR2+,令S表′=2πR-=0,解得R=3,即当R=3时,S表最小.9.(2016·菏泽高二检测)函数f(x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是()A.(0,1)B.(-∞,1)C.(0,+∞)D.【解析】选D.f′(x)=3x2-6b,因为f(x)在(0,1)内有极小值,所以f′(x)=0在x∈(0,1)有解.所以所以0b.10.(2016·合肥高二检测)设ab,函数y=(x-a)2(x-b)的图象可能是()【解析】选C.y′=2(x-a)(x-b)+(x-a)2=(x-a)·(3x-a-2b),由y′=0得x=a或x=.因为ab,所以a,所以当x=a时,y取极大值0;当x=时,y取极小值且极小值为负.11.(2016·烟台高二检测)已知a0,函数f(x)=ax3+lnx,且f′(1)的最小值是-12,则实数a的值为()A.2B.-2C.4D.-4【解析】选B.f′(x)=3ax2+,所以f′(1)=3a+≥-12,即a+≥-4,又a0,有a+≤-4.故a+=-4,此时a=-2.12.(2016·全国卷Ⅰ)若函数f(x)=x-sin2x+asinx在(-∞,+∞)上单调递增,则a的取值范围是()A.B.C.D.【解析】选C.方法一:用特殊值法:取a=-1,f(x)=x-sin2x-sinx,f′(x)=1-cos2x-cosx,但f′(0)=1--1=-0,不具备在(-∞,+∞)上单调递增,排除A,B,D.方法二:f′(x)=1-cos2x+acosx≥0对x∈R恒成立,故1-(2cos2x-1)+acosx≥0,即acosx-cos2x+≥0恒成立,令t=cosx,所以-t2+at+≥0对t∈恒成立,构造函数f(t)=-t2+at+,开口向下的二次函数f(t)的最小值的可能值为端点值,故只需解得-≤a≤.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2016·中山高二检测)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.【解析】y′=3lnx+1+x·=3lnx+4,所以y′|x=1=3ln1+4=4.又f(1)=1×(3ln1+1)=1,所以所求的切线方程为y-1=4(x-1),即4x-y-3=0.答案:4x-y-3=014.(2016·郑州高二检测)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0,则a=,b=.【解析】f′(x)=-.由于直线x+2y-3=0的斜率为-,且过点(1,1).故即解得a=1,b=1.答案:1115.函数y=x+2cosx-在区间上的最大值是.【解析】y′=1-2sinx=0,在区间上解得x=,故y=x+2cosx-在区间上是增函数,在区间上是减函数,所以x=时,y=,而x=0时,y=2-,x=时y=-,且2--,故函数y=x+2cosx-在区间上的最大值是.答案:【补偿训练】曲线y=x3-2以点为切点的切线的倾斜角为.【解析】y′=x2,当x=1时,y′=1,从而切线的倾斜角为45°.答案:45°16.设f(x)=x3-x2-2x+5,当x∈时,f(x)m恒成立,则实数m的取值范围是.【解析】f′(x)=3x2-x-2=(x-1)(3x+2),令f′(x)=0,得x=1或x=-.f(x)极小值=f(1)=1--2+5=,f(x)极大值=f=--++5=5.又f(-1)=-1-+2+5=,f(2)=8-2-4+5=7,比较可得f(x)max=f(2)=7.因为f(x)m对x∈恒成立.所以m7.答案:(7,+∞)三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2016·南昌高二检测)设函数f(x)=6x3+3(a+2)x2+2ax.(1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值.(2)是否存在实数a,使得f(x)是(-∞,+∞)上的单调函数?若存在,求出a的值;若不存在,说明理由.【解析】f′(x)=18x2+6(a+2)x+2a.(1)由已知有f′(x1)=f′(x2)=0,从而x1x2==1,所以a=9.(2)由于Δ=36(a+2)2-4×18×2a=36(a2+4)0,所以不存在实数a,使得f(x)是(-∞,+∞)上的单调函数.【补偿训练】已知函数f(x)=ax2+2x-lnx.(1)当a=0时,求f(x)的极值.(2)若f(x)在区间上是增函数,求实数a的取值范围.【解析】(1)函数的定义域为(0,+∞).因为f(x)=ax2+2x-lnx,当a=0时,f(x)=2x-lnx,则f′(x)=2-,令f′(x)=0得x=,所以当x变化时,f′(x),f(x)的变化情况如表xf′(x)-0+f(x)↘极小值↗所以当x=时,f(x)的极小值为1+ln2,无极大值.(2)由已知,得f(x)=ax2+2x-lnx,且x0,则f′(x)=ax+2-=.若a=0,由f′(x)0得x,显然不合题意;若a≠0,因为函数f(x)在区间上是增函数,所以f′(x)≥0对x∈恒成立,即不等式ax2+2x-1≥0对x∈恒成立,即a≥=-=-1恒成立,故a≥.而当x=时,函数-1的最大值为3,所以实数a的取值范围为a≥3.18.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程.(2)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.【解析】(1)因为f′(x)=(x3+x-16)′=3x2+1,所以f(x)在点(2,-6)处的切线的斜率为k=f′(2)=13.所以切线的方程为y=13(x-2)+(-6),即y=13x-32.(2)因为切线与直线y=-+3垂直,所以切线的斜率k=4.设切点的坐标为(x0,y0),则f′(x0)=3+1=4,所以x0=±1,所以或即切点坐标为(1,-14)或(-1,-18).切线方程为y=4(x-1)-14或y=4(x+1)-18.即y=4x-18或y=4x-14.19.(12分)(2016·临沂高二检测)已知函数f(x)=lnx-ax2-2x.(1)若函数f(x)在x=2处取得极值,求实数a的值.(2)若函数f(x)在定义域内单调递增,求a的取值范围.【解析】(1)f′(x)=-(x0),因为x=2时,f(x)取得极值,所以f′(2)=0,解之得a=-,经检验符合题意.(2)由题意知f′(x)≥0在x0时恒成立,即ax2+2x-1≤0在x0时恒成立,则a≤=-1在x0时恒成立,即a≤(x0),当x=1时,-1取得最小值-1.所以a的取值范围是(-∞,-1].20.(12分)某5A级景区为提高经济效益,现对某景点进行改造升级,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x(x≥10)万元之间满足:y=f(x)=ax2+x-bln,a,b为常数,当x=10万元时,y=19.2万元;当x=50万元时,y=74.4万元.(参考数据:ln2=0.7,ln3=1.1,ln5=1.6)(1)求f(x)的解析式.(2)求该景点改造升级后旅游利润T(x)的最大值.(利润=旅游增加值-投入)【解析】(1)由条件可得解得a=-,b=1.则f(x)=-+x-ln(x≥10).(2)由T(x)=f(x)-x=-+x-ln(x≥10),则T′(x)=-+-=-,令T′(x)=0,则x=1(舍)或x=50,当x∈(10,50)时,T′(x)0,因此T(x)在(10,50)上是增函数;当x50时,T′(x)0,因此T(x)在(50,+∞)上是减函数,故x=50为T(x)的极大值点,也是最大值点,且最大值为24.4万元.即该景点改造升级后旅游利润T(x)的最大值为24.4万元.21.(12分)(2016·绍兴高二检测)已知函数f(x)=x3-3ax2-9a2x+a3.(1)设a=1,求函数f(x)的极值.(2)若a,且当x∈时,f(x)≥a3-12a恒成立,试确定a的取值范围.【解析】(1)当a=1时,f(x)=x3-3x2-9x+1且f′(x)=3x2-6x-9,由f′(x)=0得x=-1或x=3.当x-1时,f′(x)0,当-1x3时,f′(x)0,因此x=-1是函数f(x)的极大值点,极大值为f(-1)=6;当-1x3时f′(x)0,当x3时f′(x)0,因此x=3是函数的极小值点,极小值为f(3)=-26.(2)因为f′(x)=3x2-6ax-9a2=3(x+a)(x-3a),a,所以当1≤x3a时,f′(x)0;当3ax≤4a时,f′(x)0.所以x∈时,f(x)的最小值为f(3a)=-26a3.由f(x)≥a3-12a在上恒成立得-26a3≥a3-12a.解得a≤-或0≤a≤.又a,所以a≤.即a的取值范围为.22.(12分)奇函数f(x)=ax3+bx2+cx的图象过点A(-,),B(2,10).(1)求f(x)的表达式.(2)求f(x)的单调区间.(3)若方程f(x)+m=0有三个不同的实数根,求m的取值范围.【解析】(1)因为f(x)=ax3+bx2+cx为奇函数,所以f(-x)=-f(x)(x∈R).所以b=
本文标题:人教A版高中数学选修11单元质量评估三Word版含答案
链接地址:https://www.777doc.com/doc-5766808 .html