您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 人教A版高中数学选修11课时提升作业八143含有一个量词的命题的否定探究导学课型W
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(八)含有一个量词的命题的否定(15分钟30分)一、选择题(每小题4分,共12分)1.(2014·安徽高考)命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x20B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+0D.∃x0∈R,|x0|+≥0【解析】选C.命题“∀x∈R,|x|+x2≥0”的否定是“∃x0∈R,|x0|+0”.2.(2015·全国卷Ⅰ)设命题p:∃n∈N,n22n,则p为()A.∀n∈N,n22nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n【解析】选C.p:∀n∈N,n2≤2n.【补偿训练】命题p:“有些三角形是等腰三角形”,则p是()A.有些三角形不是等腰三角形B.所有三角形是等边三角形C.所有三角形不是等腰三角形D.所有三角形是等腰三角形【解析】选C.p是“所有三角形不是等腰三角形”.3.(2015·中山高二检测)已知命题p:∀x∈R,2x2+2x+0,命题q:∃x0∈R,sinx0-cosx0=,则下列判断中正确的是()A.p是真命题B.q是假命题C.p是假命题D.q是假命题【解题指南】先判断p,q的真假,再得p,q真假,进而得结论.【解析】选D.因为2x2+2x+=2≥0,所以p是假命题,p为真命题.又sinx0-cosx0=sin≤,故q是真命题,q为假命题.所以选D.二、填空题(每小题4分,共8分)4.(2015·烟台高二检测)已知命题p:∀x2,x3-80,那么p是________.【解题指南】根据全称命题的否定是特称命题进行判断即可.【解析】命题p为全称命题,其否定为特称命题,则p:∃x02,-8≤0.答案:∃x02,-8≤05.(2015·资阳高二检测)已知命题p:∃x0∈R,+ax0+a0.若命题p是假命题,则实数a的取值范围是________.【解析】因为若命题p:∃x0∈R,+ax0+a0是假命题,则p是真命题,说明x2+ax+a≥0恒成立,所以Δ=a2-4a≤0,解得0≤a≤4.答案:【补偿训练】(2014·烟台高二检测)已知命题p:任意x∈R,ax2-2x+3≥0,如果命题p是真命题,求实数a的取值范围.【解析】因为命题p是真命题,所以p是假命题.又当p是真命题,即ax2-2x+3≥0恒成立时,应有解得a≥,所以当p是假命题时,a.所以实数a的取值范围是.三、解答题6.(10分)写出下列命题的否定,并判断真假.(1)p:一切分数都是有理数.(2)q:直线l垂直于平面α,则对任意l′⊂α,l⊥l′.(3)r:若an=-2n+10,则存在n∈N,使Sn0(Sn是{an}的前n项和).(4)s:∀x∈Q,使得x2+x+1是有理数.【解析】(1)p:存在一个分数不是有理数,假命题.(2)q:直线l垂直于平面α,则∃l′⊂α,l与l′不垂直,假命题.(3)r:若an=-2n+10,则∀n∈N,有Sn≥0,假命题.(4)s:∃x0∈Q,使+x0+1不是有理数,假命题.(15分钟30分)一、选择题(每小题5分,共10分)1.(2015·天津高二检测)已知命题p:∀b∈.答案:(-∞,1]三、解答题5.(10分)已知函数f(x)=x2,g(x)=-m.(1)x∈,求f(x)的值域.(2)若对∀x∈,g(x)≥1成立,求实数m的取值范围.(3)若对∀x1∈,∃x2∈,使得g(x1)≤f(x2)成立,求实数m的取值范围.【解题指南】(1)直接根据二次函数的性质,确定函数的单调性,从而可得函数的最值,即可求得函数的值域.(2)根据对∀x∈,g(x)≥1成立,等价于g(x)在上的最小值大于或等于1,而g(x)在上单调递减,利用其单调性建立关于m的不等关系,即可求得实数m的取值范围.(3)对∀x1∈,∃x2∈,使得g(x1)≤f(x2)成立,等价于g(x)在上的最大值小于或等于f(x)在上的最大值9,从而建立关于m的不等式,由此可求结论.【解析】(1)当x∈时,函数f(x)=x2∈,所以f(x)的值域为.(2)对∀x∈,g(x)≥1成立,等价于g(x)在上的最小值大于或等于1.而g(x)在上单调递减,所以-m≥1,即m≤-.(3)对∀x1∈,∃x2∈,使得g(x1)≤f(x2)成立,等价于g(x)在上的最大值小于或等于f(x)在上的最大值9,由1-m≤9,所以m≥-8.关闭Word文档返回原板块
本文标题:人教A版高中数学选修11课时提升作业八143含有一个量词的命题的否定探究导学课型W
链接地址:https://www.777doc.com/doc-5766864 .html