您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 人教版高中数学必修二检测第二章点直线平面之间的位置关系课后提升作业十22122
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课后提升作业十直线与平面平行的判定平面与平面平行的判定(45分钟70分)一、选择题(每小题5分,共40分)1.(2016·济宁高一检测)已知l∥α,m∥α,l∩m=P且l与m确定的平面为β,则α与β的位置关系是()A.相交B.平行C.相交或平行D.不确定【解析】选B.因为l∩m=P,所以过l与m确定一个平面β,又因为l∥α,m∥α,l∩m=P,所以β∥α.2.已知a,b是两条相交直线,a∥α,则b与α的位置关系是()A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交【解析】选D.由题意画出图形,当a,b所在平面与平面α平行时,b与平面α平行,当a,b所在平面与平面α相交时,b与平面α相交.3.(2016·福州高一检测)平面α与△ABC的两边AB,AC分别交于点D,E,且AD︰DB=AE︰EC,如图,则BC与α的位置关系是()A.平行B.相交C.平行或相交D.异面【解析】选A.因为AD︰DB=AE︰EC,所以DE∥BC,又DE⊂α,BC⊄α,所以BC∥α.4.有以下三种说法,其中正确的是()①若直线a与平面α相交,则α内不存在与a平行的直线;②若直线b∥平面α,直线a与直线b垂直,则直线a不可能与α平行;③直线a,b满足a∥α,a∥b,且b⊂α,则a平行于经过b的任何平面.A.①②B.①③C.②③D.①【解析】选D.①正确,若在α内存在一条直线b,使a∥b,则a∥α与“a与平面α相交”矛盾,故①正确;②错误,反例如图(1)所示;③错误,反例如图(2)所示,a,b可能在同一平面内.5.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则()A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形【解析】选B.如图,由题意得,EF∥BD,且EF=BD.HG∥BD,且HG=BD.所以EF∥HG,且EF≠HG.所以四边形EFGH是梯形.所以EF∥平面BCD,而EH与平面ADC不平行.故选B.6.正方体EFGH-E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G【解析】选A.在平面E1FG1与平面EGH1中,因E1G1∥EG,FG1∥EH1,且E1G1∩FG1=G1,EG∩EH1=E,故平面E1FG1∥平面EGH1.7.已知m,n是两条直线,α,β是两个平面,有以下说法:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确说法的个数是()A.0B.1C.2D.3【解析】选B.设m∩n=P,则直线m,n确定一个平面,设为γ,由面面平行的判定定理知,α∥γ,β∥γ,因此,α∥β,即①正确;如图,在长方体ABCD-A1B1C1D1中,直线EF平行于平面ADD1A1和平面A1B1C1D1,即满足②的条件,但平面A1B1C1D1与平面ADD1A1不平行,因此②不正确;图中,EF∥平面ADD1A1,BC∥平面A1B1C1D1,EF∥BC,但平面ADD1A1与平面A1B1C1D1不平行,所以③也不正确.8.(2016·青岛高一检测)在正方体ABCD-A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点,P在对角线BD1上,且BP=BD1,给出下面四个命题:(1)MN∥平面APC;(2)C1Q∥平面APC;(3)A,P,M三点共线;(4)平面MNQ∥平面APC.正确的序号为()A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)【解析】选C.(1)MN∥AC,连接AM,CN,易得AM,CN交于点P,即MN⊂平面PAC,所以MN∥平面APC是错误的;(2)平面APC延展,可知M,N在平面APC上,AN∥C1Q,所以C1Q∥平面APC,是正确的;(3)由BP=BD1,以及相似,可得A,P,M三点共线,是正确的;(4)直线AP延长到M,则M在平面MNQ内,又在平面APC内,所以平面MNQ∥平面APC,是错误的.二、填空题(每小题5分,共10分)9.(2016·济南高一检测)三棱锥S-ABC中,G为△ABC的重心,E在棱SA上,且AE=2ES,则EG与平面SBC的关系为________.【解析】连接AG并延长交BC于点M,连接SM,则AG=2GM,又AE=2ES,所以EG∥SM,又EG⊄平面SBC,所以EG∥平面SBC.答案:平行10.(2016·太原高一检测)下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是________.(将你认为正确的都填上)【解析】在④中NP平行所在正方体的那个侧面的对角线,从而平行AB,所以AB∥平面MNP;在①中设过点B且垂直于上底面的棱与上底面交点为C,则由NP∥CB,MN∥AC,可知平面MNP∥平面ABC,即AB∥平面MNP.答案:①④【补偿训练】(2016·菏泽高一检测)如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点,则下列命题:①E,C,D1,F四点共面;②CE,D1F,DA三线共点;③EF和BD1所成的角为90°;④A1B∥平面CD1E.其中正确的是________(填序号).【解析】由题意EF∥CD1,故E,C,D1,F四点共面;由EF�CD1,故D1F与CE相交,记交点为P,则P∈平面ADD1A1,P∈平面ABCD,所以点P在平面ADD1A1与平面ABCD的交线AD上,故CE,D1F,DA三线共点;∠A1BD1即为EF与BD1所成角,显然∠A1BD1≠90°;因为A1B∥EF,EF⊂平面CD1E,A1B⊄平面CD1E,所以A1B∥平面CD1E.答案:①②④三、解答题(每小题10分,共20分)11.(2015·福建高考改编)如图,在几何体ABCDE中,四边形ABCD是矩形,G,F分别是BE,DC的中点.求证:GF∥平面ADE.【证明】取AE的中点H,连接HG,HD,又G是BE的中点,所以GH∥AB且GH=AB,又F是CD的中点,所以DF=CD,由四边形ABCD是矩形,得ABCD,所以GHDF,从而四边形HGFD是平行四边形,所以GF∥HD.又DH⊂平面ADE,GF⊄平面ADE,所以GF∥平面ADE.12.(2015·四川高考改编)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M,GH的中点为N.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由).(2)判断平面BEG与平面ACH的位置关系,并证明你的结论.【解析】(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH于是BCHE为平行四边形.所以BE∥CH,又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH,又BE∩BG=B,所以平面BEG∥平面ACH.【能力挑战题】已知直三棱柱ABC-A1B1C1,点N在AC上且CN=3AN,点M,P,Q分别是AA1,A1B1,BC的中点.求证:直线PQ∥平面BMN.【证明】如图,取AB中点G,连接PG,QG分别交BM,BN于点E,F,则E,F分别为BM,BN的中点.而GE∥AM,GE=AM,GF∥AN,GF=AN,且CN=3AN,所以=,==,所以==,所以EF∥PQ,又EF⊂平面BMN,PQ⊄平面BMN,所以PQ∥平面BMN.关闭Word文档返回原板块
本文标题:人教版高中数学必修二检测第二章点直线平面之间的位置关系课后提升作业十22122
链接地址:https://www.777doc.com/doc-5766992 .html