您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 数学22直线平面平行的判定及其性质同步测试及解析新人教A版必修2高中数学练习试题
第-1-页共6页2.2直线、平面平行的判定及其性质一、选择题1、若两个平面互相平行,则分别在这两个平行平面内的直线()A.平行B.异面C.相交D.平行或异面2、下列结论中,正确的有()①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥β,点P∈α,a∥β,且P∈a,则aαA.1个B.2个C.3个D.4个解析:若aα,则a∥α或a与α相交,由此知①不正确若a∥平面α,bα,则a与b异面或a∥b,∴②不正确若平面α∥β,aα,bβ,则a∥b或a与b异面,∴③不正确由平面α∥β,点P∈α知P过点P而平行平β的直线a必在平面α内,是正确的.证明如下:假设aα,过直线a作一面γ,使γ与平面α相交,则γ与平面β必相交.设γ∩α=b,γ∩β=c,则点P∈b.由面面平行性质知b∥c;由线面平行性质知a∥c,则a∥b,这与a∩b=P矛盾,∴aα.故④正确.3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定参考答案与解析:解析:在平面ABC内.∵AE:EB=CF:FB=1:3,∴AC∥EF.可以证明AC平面DEF.若AC平面DEF,则AD平面DEF,BC平面DEF.由此可知ABCD为平面图形,这与ABCD是空间四边形矛盾,故AC平面DEF.∵AC∥EF,EF平面DEF.∴AC∥平面DEF.主要考察知识点:空间直线和平面4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是()A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在第-2-页共6页参考答案与解析:解析:如当A与a确定的平面与b平行时,过A作与a,b都平行的平面不存在.答案:D主要考察知识点:空间直线和平面5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是()A.b∥αB.bαC.b与α相交D.以上都有可能参考答案与解析:思路解析:a与b垂直,a与b的关系可以平行、相交、异面,a与α平行,所以b与α的位置可以平行、相交、或在α内,这三种位置关系都有可能.答案:D主要考察知识点:空间直线和平面6、下列命题中正确的命题的个数为()①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.A.1B.2C.3D.4参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内(若改为l与α内任何直线都平行,则必有l∥α),∴①是假命题.对于②,∵直线a在平面α外,包括两种情况a∥α和a与α相交,∴a与α不一定平行,∴②为假命题.对于③,∵a∥b,bα,只能说明a与b无公共点,但a可能在平面α内,∴a不一定平行于平面α.∴③也是假命题.对于④,∵a∥b,bα.那么aα,或a∥α.∴a可以与平面α内的无数条直线平行.∴④是真命题.综上,真命题的个数为1.答案:A主要考察知识点:空间直线和平面7、下列命题正确的个数是()(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥αA.0个B.1个C.2个D.3个参考答案与解析:解析:由直线和平面平行的判定定理知,没有正确命题.答案:A主要考察知识点:空间直线和平面第-3-页共6页8、已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若mα,nβ,m∥n,则α∥β;④若m、n是异面直线,mα,m∥β,nβ,n∥α,则α∥β.其中真命题是()A.①和②B.①和③C.③和④D.①和④参考答案与解析:解析:利用平面平行判定定理知①④正确.②α与β相交且均与γ垂直的情况也成立,③中α与β相交时,也能满足前提条件答案:D主要考察知识点:空间直线和平面9、长方体ABCD-A1B1C1D1中,E为AA1中点,F为BB1中点,与EF平行的长方体的面有()A.1个B.2个C.3个D.4个参考答案与解析:解析:面A1C1,面DC1,面AC共3个.答案:C主要考察知识点:空间直线和平面10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,M,使得l∥α,l∥β,M∥α,M∥β.其中可以判断两个平面α与β平行的条件有()A.1个B.2个C.3个D.4个参考答案与解析:解析:取正方体相邻三个面为α、β、γ,易知α⊥γ,β⊥γ,但是α与β相交,不平行,故排除①,若α与β相交,如图所示,可在α内找到A、B、C三个点到平面β的距离相等,所以排除③.容易证明②④都是正确的.答案:B主要考察知识点:空间直线和平面二、填空题【共4道小题】第-4-页共6页1、在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是棱A1B1、B1C1的中点,P是棱AD上一点,AP=,过P、M、N的平面与棱CD交于Q,则PQ=_________.参考答案与解析:解析:由线面平行的性质定理知MN∥PQ(∵MN∥平面AC,PQ=平面PMN∩平面AC,∴MN∥PQ).易知DP=DQ=.故.答案:主要考察知识点:空间直线和平面2、如果空间中若干点在同一平面内的射影在一条直线上,那么这些点在空间的位置是__________.参考答案与解析:共线或在与已知平面垂直的平面内主要考察知识点:空间直线和平面3、若直线a和b都与平面α平行,则a和b的位置关系是__________.参考答案与解析:相交或平行或异面主要考察知识点:空间直线和平面4、正方体ABCD-A1B1C1D1中,E为DD1中点,则BD1与过点A,C,E的平面的位置关系是_________.参考答案与解析:解析:如图所示,连结BD,设BD∩AC=O,连结BD1,在△BDD1中,E为DD1的中点,O为BD的中点,∴OE为△BDD1的中位线.∴OE∥BD1.又平面ACE,OE平面ACE,∴BD1∥平面ACE.答案:平行主要考察知识点:空间直线和平面三、解答题【共3道小题】1、如图,直线AC,DF被三个平行平面α、β、γ所截.①是否一定有AD∥BE∥CF;②求证:.第-5-页共6页参考答案与解析:解析:①平面α∥平面β,平面α与β没有公共点,但不一定总有AD∥BE.同理不总有BE∥CF.②过A点作DF的平行线,交β,γ于G,H两点,AH∥DF.过两条平行线AH,DF的平面,交平面α,β,γ于AD,GE,HF.根据两平面平行的性质定理,有AD∥GE∥HF.AGED为平行四边形.∴AG=DE.同理GH=EF.又过AC,AH两相交直线之平面与平面β,γ的交线为BG,CH.根据两平面平行的性质定理,有BG∥CH.在△ACH中,.而AG=DE,GH=EF,∴.主要考察知识点:空间直线和平面2、如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB.参考答案与解析:解析:要说明SA∥平面MDB,就要在平面MDB内找一条直线与SA平行,注意到M是SC的中点,于是可找AC的中点,构造与SA平行的中位线,再说明此中位线在平面MDB内,即可得证.证明:连结AC交BD于N,因为ABCD是平行四边形,所以N是AC的中点.又因为M是SC的中点,所以MN∥SA.因为MN平面MDB,所以SA∥平面MDB.第-6-页共6页主要考察知识点:空间直线和平面3、如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心,求证:MN∥平面PB1C.参考答案与解析:证明:如图,连结AC,则P为AC的中点,连结AB1,∵M、N分别是A1A与A1B1的中点,∴MN∥AB1.又∵平面PB1C,平面PB1C,故MN∥面PB1C.
本文标题:数学22直线平面平行的判定及其性质同步测试及解析新人教A版必修2高中数学练习试题
链接地址:https://www.777doc.com/doc-5770853 .html