您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 第3章322同步训练及详解高中数学练习试题
1高中数学必修一同步训练及解析1.今有一组数据,如表所示:x12345y356.999.0111则下列函数模型中,最接近地表示这组数据满足的规律的一个是()A.指数函数B.反比例函数C.一次函数D.二次函数解析:选C.画出散点图,结合图象(图略)可知各个点接近于一条直线,所以可用一次函数表示.2.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=cx,xA,cA,x≥A(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是()A.75,25B.75,16C.60,25D.60,16解析:选D.由函数解析式可以看出,组装第A件产品所需时间为cA=15,故组装第4件产品所需时间为c4=30,解得c=60,将c=60代入cA=15得A=16.3.长为4,宽为3的矩形,当长增加x,且宽减少x2时面积最大,此时x=________,面积S=________.解析:依题意得:S=(4+x)(3-x2)=-12x2+x+12=-12(x-1)2+1212,∴当x=1时,Smax=1212.答案:112124.“弯弓射雕”描述了游牧民族的豪迈气概.当弓箭手以每秒a米的速度从地面垂直向上射箭时,t秒后的高度x米可由x=at-5t2确定.已知射出2秒后箭离地面高100米,则弓箭能达到的最大高度为________米.解析:由x=at-5t2且t=2时,x=100,解得a=60.∴x=60t-5t2.由x=-5t2+60t=-5(t-6)2+180,知当t=6时,x取得最大值为180,即弓箭能达到的最大高度为180米.答案:180[A级基础达标]21.龙年到了,农民李老汉进城购买年货,如图是李老汉从家里出发进城往返示意图,其中y(单位:千米)表示离家的距离,x(单位:分钟)表示经过的时间,县城可看做一个点,即李老汉在城内所走的路程不计,下列说法正确的是()①李老汉购买年货往返共用80分钟;②李老汉的家距离县城40千米;③李老汉进城的平均速度要大于回来的平均速度;④李老汉回来的平均速度要大于进城的平均速度.A.①②④B.①④C.①②③D.①②③④解析:选C.李老汉进城用了20分钟,走了40千米,回来则用了30分钟,李老汉进城的平均速度要大于回来的平均速度,答案应选C项.2.已知某产品的总成本y(万元)与产量x(台)之间的函数关系是y=0.1x2-11x+3000,每台产品的售价为25万元,则生产者为获得最大利润,产量x应定为()A.55台B.120台C.150台D.180台解析:选D.设利润为S,由题意得,S=25x-y=25x-0.1x2+11x-3000=-0.1x2+36x-3000=-0.1(x-180)2+240,∴当产量x=180台时,生产者获得最大利润,故选D.3.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y=4x,1≤x10,x∈N*2x+10,10≤x100,x∈N*1.5x,x≥100,x∈N*.其中,x代表拟录用人数,y代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为()A.15B.40C.25D.130解析:选C.令y=60,若4x=60,则x=1510,不合题意;若2x+10=60,则x=25,满足题意;若1.5x=60,则x=40100,不合题意.故拟录用人数为25人.4.把长为12cm的细铁丝截成两段,各自围成一个正方形,那么这两个正方形面积之和的最小值是________.解析:把细铁丝截成两段,设一段为xcm,0x12,另一段为(12-x)cm,则两个正方形面积之和为:3S=x42+12-x42=116x2+116(12-x)2=18(x-6)2+92,∵0x12,∴当x=6时,Smin=92(cm2).答案:92cm25.已知A、B两地相距150km,某人开汽车以60km/h的速度从A地到达B地,在B地停留一小时后再以50km/h的速度返回A地,汽车离开A地的距离x随时间t变化的关系式是________.解析:从A地到B地,以60km/h匀速行驶,x=60t,耗时2.5个小时,停留一小时,x不变.从B地返回A地,匀速行驶,速度为50km/h,耗时3小时,故x=150-50(t-3.5)=-50t+325.所以x=60t,0≤t≤2.5,150,2.5t≤3.5,-50t+325,3.5t≤6.5.答案:x=60t,0≤t≤2.5150,2.5t≤3.5-50t+325,3.5t≤6.56.A,B两城相距100km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?解:(1)x的取值范围为10≤x≤90.(2)y=5x2+52(100-x)2(10≤x≤90).(3)由y=5x2+52(100-x)2=152x2-500x+25000=152x-10032+500003,得x=1003时,ymin=500003.即核电站建在距A城1003km处,能使供电总费用y最少.[B级能力提升]7.如图,△ABC为等腰直角三角形,直线l与AB相交且l⊥AB,直线l截这个三角形所得的位于直线右方的图形面积为y,点A到直线l的距离为x,则y=f(x)的图象大致为四个选项中的()4解析:选C.设AB=BC=a,则S=12a2-12x2(0≤x≤a).故选C.8.某产品成本为a元,在今后m年内,计划使成本平均每年比上一年降低p%,则成本y与经过的年数x的函数关系式为()A.y=a·(1-p%)m(m∈N*)B.y=a·(1-m·p%)x(x∈N*且x≤m)C.y=a·(1-p%)x(x∈N*且x≤m)D.y=a·(1-p%)xm,(x∈N*,且x≤m)解析:选C.过1年为y=a·(1-p%)1过2年为y=a·(1-p%)2……过x年为y=a·(1-p%)x(x∈N*且x≤m).9.已知某工厂生产某种产品的月产量y与月份x满足关系y=a·(0.5)x+b,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品产量为________.解析:由1=a·0.51+b,1.5=a·0.52+b⇒a=-2,b=2⇒y=-2·(0.5)x+2,所以3月份产量为y=-2·(0.5)3+2=1.75万件.答案:1.75万件10.某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y(件)与销售单价x(元)之间的关系可近似看作一次函数y=kx+b(k≠0),函数图象如图所示.(1)根据图象,求一次函数y=kx+b(k≠0)的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?解:(1)由图象知,当x=600时,y=400;当x=700时,y=300,代入y=kx+b(k≠0)中,得400=600k+b,300=700k+b,解得k=-1,b=1000.所以,y=-x+1000(500≤x≤800).(2)销售总价=销售单价×销售量=xy,成本总价=成本单价×销售量=500y,5代入求毛利润的公式,得S=xy-500y=x(-x+1000)-500(-x+1000)=-x2+1500x-500000=-(x-750)2+62500(500≤x≤800).所以,当销售单价定为750元时,可获得最大毛利润62500元,此时销售量为250件.11.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数v=12·log3O100,单位是m/s,其中O表示鱼的耗氧量的单位数.(1)当一条鱼的耗氧量是2700个单位时,它的游速是多少?(2)计算一条鱼静止时耗氧量的单位数.解:(1)由题意得v=12log32700100=32(m/s).(2)当一条鱼静止时,即v=0(m/s),则0=12log3O100,解得O=100.所以当一条鱼的耗氧量是2700个单位时,它的游速是32m/s,当一条鱼静止时耗氧量的单位数是100.
本文标题:第3章322同步训练及详解高中数学练习试题
链接地址:https://www.777doc.com/doc-5774787 .html