您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 精练六动量能量综合问题
精练六动量、能量综合问题【考点提示】⑴支量定理和动量守恒定律⑵机械能守恒定律⑶碰撞、反冲【命题预测】动量与能量是高考的必考内容,题型全,综合性强,是命题的热点之一。高考认证一、选择题1.一位质量为m的运动员从下蹲状态向上起跳,经Δt时间,身体伸直并刚好离开地面,速度为v。在此过程中,A.地面对他的冲量为mv+mgΔt,地面对他做的功为2021mvB.地面对他的冲量为mv+mgΔt,地面对他做的功为零C.地面对他的冲量为mv,地面对他做的功为2021mvD.地面对他的冲量为mv-mgΔt,地面对他做的功为零2.如图所示,位于光滑水平桌面上的小滑块P和Q都可视作质点,质量相等。Q与轻质弹簧相连。设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞。在整个碰撞过程中,弹簧具有的最大弹性势能等于A.P的初动能B.P的初动能的1/2C.P的初动能的1/3D.P的初动能的1/43.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动。两球质量关系为mB=2mA,规定向右为正方向,A、B两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4kg·m/s,则()A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶104.一个质量为0.3kg的弹性小球,在光滑水平面上以6m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv和碰撞过程中墙对小球做功的大小W为()A.Δv=0B.Δv=12m/sC.W=0D.W=10.8J5.在光滑水平地面上有两个相同的弹性小球A、B,质量都为m。现B球静止,A球向B球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为Ep,则碰前A球的速度等于()A.B.C.2D.26.在高速公路上发生一起交通事故,一辆质量为1500kg向南行驶的长途客车迎面撞上了一质量为3000kg向北行驶的卡车,碰后两辆车接在一起,并向南滑行了一小段距离后停止.根据测速仪的测定,长途客车碰前以20m/s的速率行驶,由此可判断卡车碰前的行驶速率()A.小于10m/sB.大于10m/s小于20m/sC.大于20m/s小于30m/sD.大于30m/s小于40m/s,动量大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反,将碰后球1的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2,则必有(A)E1<E0(B)p1<p0(C)E2>E0(D)p2>p08.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2.在碰撞过程中,地面对钢球的冲量的方向和大小为(A)向下,m(v1-v2)(B)向下,m(v1+v2)(C)向上,m(v1-v2)(D)向上,m(v1+v2)9.在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是(A)(B)(C)(D)二、非选择题10.如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的挡板B相连,弹簧处于原长时,B恰位于滑道的末端O点。A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求(1)物块A在与挡板B碰撞前瞬间速度v的大小;(2)弹簧最大压缩量为d时的弹性势能EP(设弹簧处于原长时弹性势能为零)。答案(1)(2)11.质量为M的小物块A静止在离地面高h的水平桌面的边缘,质量为m的小物块B沿桌面向A运动并以速度v0与之发生正碰(碰撞时间极短)。碰后A离开桌面,其落地点离出发点的水平距离为L。碰后B反向运动。求B后退的距离。已知B与桌面间的动摩擦因数为μ。重力加速度为g。答案l=(-v0)212.如图所示,在一光滑的水平面上有两块相同的木板B和C。重物A(视为质点)位于B的右端,A、B、C的质量相等,现A和B以同一速度滑向静止的C,B与C发生正碰。碰后B和C粘在一起运动,A在C上滑行,A与C有摩擦力。已知A滑到C的右端而未掉下。试问:从B、C发生正碰到A刚移动到C右端期间,C所走过的距离是C板长度的多少倍?答案=如图,长木板ab的b端固定一档板,木板连同档板的质量为M=4.0kg,a、b间距离s=2.0m。木板位于光滑水平面上。在木板a端有一小物块,其质量m=1.0kg,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态。现令小物块以初速v0=4.0m/s沿木板向前滑动,直到和档板相碰。碰撞后,小物块恰好回到a端而不脱离木板。求碰撞过程中损失的机械能。答案E1=·-2μmgs代入数据得E1=2.4J14.对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可以简化为如下模型:A、B两物体位于光滑水平面上,仅限于沿同一直线运动。当它们之间的距离大于等于某一定值d时,相互作用力为零;当它们之间的距离小于d时,存在大小恒为F的斥力。设A物体质量m1=1.0kg,开始时静止在直线上某点;B物体质量m2=3.0kg,以速度v0从远处沿该直线向A运动,如图所示。若d=0.10m,F=0.60N,v0=0.20m/s,求:(1)相互作用过程中A、B加速度的大小;(2)从开始相互作用到A、B间的距离最小时,系统(物体组)动能的减少量;(3)A、B间的最小距离。答案0.6、0.2;0.015J;0.075m15.一质量为m的小球,以初速度v0沿水平方向射出,恰好垂直地射到一倾角为的固定斜面上,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的.求在碰撞中斜面对小球的冲量的大小.答案I=mv016.图中,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态.另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行.当A滑过距离l1时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连.已知最后A恰好返回到出发点P并停止.滑块A和B与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为l2,重力加速度为g.求A从P点出发时的初速度v0.答案v0=17.有一炮竖直向上发射炮弹。炮弹的质量为M=6.0kg(内含炸药的质量可以忽略不计),射出的初速度v0=60m/s。当炮弹到达最高点时爆炸为沿水平方向运动的两片,其中一片质量为m=4.0kg。现要求这一片不能落到以发射点为圆心、以R=600m为半径的圆周范围内,则刚爆炸完时两弹片的总动能至少多大?(g=10m/s2,忽略空气阻力)答案Ek=6.0×104J.一辆质量m=2kg的平板车左端放有质量M=3kg的小滑块,滑块与平板车之间的动摩擦因数μ=0.4.开始时平板车和滑块共同以v0=2m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反.平板车足够长,以至滑块不会滑到平板车右端.(取g=10m/s2)(1)平板车第一次与墙壁碰撞后向左运动的最大距离.(2)平板车第二次与墙壁碰撞前瞬间的速度v.(3)为使滑块始终不会滑到平板车右端,平板车至少多长?(1)0.33m(2)0.4m/s(3)0.833m〖1B2B3A4BC5C6A7ABD8D9AD〗
本文标题:精练六动量能量综合问题
链接地址:https://www.777doc.com/doc-5775116 .html