您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学人教A版必修二第二章点直线平面之间的位置关系学业分层测评12Word版含答案
学业分层测评(十二)(建议用时:45分钟)[达标必做]一、选择题1.下列条件中,能使直线m⊥平面α的是()A.m⊥b,m⊥c,b⊥α,c⊥αB.m⊥b,b∥αC.m∩b=A,b⊥αD.m∥b,b⊥α【解析】由线线平行及线面垂直的判定知选项D正确.【答案】D2.如图238,三棱锥PABC中,PA⊥AB,PA⊥BC,则直线PB和平面ABC所成的角是()图238A.∠BPAB.∠PBAC.∠PBCD.以上都不对【解析】由PA⊥AB,PA⊥BC,AB∩BC=B,得PA⊥平面ABC,所以∠PBA为BP与平面ABC所成的角.故选B.【答案】B3.已知直线m,n是异面直线,则过直线n且与直线m垂直的平面()【导学号:09960073】A.有且只有一个B.至多一个C.有一个或无数个D.不存在【解析】若异面直线m、n垂直,则符合要求的平面有一个,否则不存在.【答案】B4.在正方体ABCDA1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.23B.33C.23D.63【解析】如图所示,连接BD交AC于点O,连接D1O,由于BB1∥DD1,∴DD1与平面ACD1所成的角就是BB1与平面ACD1所成的角.易知∠DD1O即为所求.设正方体的棱长为1,则DD1=1,DO=22,D1O=62,∴cos∠DD1O=DD1D1O=26=63.∴BB1与平面ACD1所成的角的余弦值为63.【答案】D5.(2015·成都高二检测)已知ABCDA1B1C1D1为正方体,下列结论错误的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.AC1⊥BD1【解析】正方体中由BD∥B1D1,易知A正确;由BD⊥AC,BD⊥CC1可得BD⊥平面ACC1,从而BD⊥AC1,即B正确;由以上可得AC1⊥B1D1,同理AC1⊥D1C,因此AC1⊥平面CB1D1,即C正确;由于四边形ABC1D1不是菱形,所以AC1⊥BD1不正确.故选D.【答案】D二、填空题6.(2016·太原高一检测)如图239,平面α∩β=CD,EA⊥α,垂足为A,EB⊥β,垂足为B,则CD与AB的位置关系是________.图239【解析】∵EA⊥α,CD⊂α,根据直线和平面垂直的定义,则有CD⊥EA.同样,∵EB⊥β,CD⊂β,则有EB⊥CD.又EA∩EB=E,∴CD⊥平面AEB.又∵AB⊂平面AEB,∴CD⊥AB.【答案】CD⊥AB7.如图2310所示,PA⊥平面ABC,在△ABC中,BC⊥AC,则图中直角三角形的个数有________.图2310【解析】PA⊥平面ABCBC⊂平面ABC⇒PA⊥BCAC⊥BCPA∩AC=A⇒BC⊥平面PAC⇒BC⊥PC,∴直角三角形有△PAB、△PAC、△ABC、△PBC.【答案】4三、解答题8.如图2311,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE.求证:AE⊥BE.图2311【证明】∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE.又AE⊂平面ABE,∴AE⊥BC.∵BF⊥平面ACE,AE⊂平面ACE,∴AE⊥BF.又∵BF⊂平面BCE,BC⊂平面BCE,BF∩BC=B,∴AE⊥平面BCE.又BE⊂平面BCE,∴AE⊥BE.9.如图2312所示,三棱锥ASBC中,∠BSC=90°,∠ASB=∠ASC=60°,SA=SB=SC.求直线AS与平面SBC所成的角.【导学号:09960074】图2312【解】因为∠ASB=∠ASC=60°,SA=SB=SC,所以△ASB与△SAC都是等边三角形.因此AB=AC.如图所示,取BC的中点D,连接AD,SD,则AD⊥BC.设SA=a,则在Rt△SBC中,BC=2a,CD=SD=22a.在Rt△ADC中,AD=AC2-CD2=22a.则AD2+SD2=SA2,所以AD⊥SD.又BC∩SD=D,所以AD⊥平面SBC.因此∠ASD即为直线AS与平面SBC所成的角.在Rt△ASD中,SD=AD=22a,所以∠ASD=45°,即直线AS与平面SBC所成的角为45°.[自我挑战]10.(2015·淮安高二检测)如图2313,四棱锥SABCD的底面ABCD为正方形,SD⊥底面ABCD,则下列结论中正确的有________个.图2313①AC⊥SB;②AB∥平面SCD;③SA与平面ABCD所成的角是∠SAD;④AB与SC所成的角等于DC与SC所成的角.【解析】因为SD⊥底面ABCD,所以AC⊥SD.因为ABCD是正方形,所以AC⊥BD.又BD∩SD=D,所以AC⊥平面SBD,所以AC⊥SB,故①正确.因为AB∥CD,AB⊄平面SCD,CD⊂平面SCD,所以AB∥平面SCD,故②正确.因为AD是SA在平面ABCD内的射影,所以SA与平面ABCD所成的角是∠SAD.故③正确.因为AB∥CD,所以AB与SC所成的角等于DC与SC所成的角,故④正确.【答案】411.如图2314,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.【导学号:09960075】(1)求证:AN⊥平面PBM;(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.图2314【证明】(1)∵AB为⊙O的直径,∴AM⊥BM.又PA⊥平面ABM,∴PA⊥BM.又∵PA∩AM=A,∴BM⊥平面PAM.又AN⊂平面PAM,∴BM⊥AN.又AN⊥PM,且BM∩PM=M,∴AN⊥平面PBM.(2)由(1)知AN⊥平面PBM,PB⊂平面PBM,∴AN⊥PB.又∵AQ⊥PB,AN∩AQ=A,∴PB⊥平面ANQ.又NQ⊂平面ANQ,∴PB⊥NQ.
本文标题:高中数学人教A版必修二第二章点直线平面之间的位置关系学业分层测评12Word版含答案
链接地址:https://www.777doc.com/doc-5782505 .html