您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学人教版必修5配套练习25等比数列的前n项和第2课时
第二章2.5第2课时一、选择题1.数列112,314,518,7116,…的前n项和Sn为()A.n2+1-12nB.n2+1-12n-1C.n2+2-12nD.n2+2-12n-1[答案]A[解析]由题设知,数列的通项为an=2n-1+12n,显然数列的各项为等差数列{2n-1}和等比数列{12n}相应项的和,从而Sn=[1+3+…+(2n-1)]+(12+14+…+12n)=n2+1-12n.2.已知数列{an}的通项公式是an=1n+n+1,若前n项和为10,则项数n为()A.11B.99C.120D.121[答案]C[解析]因为an=1n+n+1=n+1-n,所以Sn=a1+a2+…+an=(2-1)+(3-2)+…+(n+1-n)=n+1-1=10,解得n=120.3.已知等比数列的前n项和Sn=4n+a,则a的值等于()A.-4B.-1C.0D.1[答案]B[解析]a1=S1=4+a,a2=S2-S1=42+a-4-a=12,a3=S3-S2=43+a-42-a=48,由已知得a22=a1a3,∴144=48(4+a),∴a=-1.4.数列{an}的通项公式为an=(-1)n-1·(4n-3),则它的前100项之和S100等于()A.200B.-200C.400D.-400[答案]B[解析]S100=1-5+9-13+…+(4×99-3)-(4×100-3)=50×(-4)=-200.5.数列{an}的前n项和为Sn,若an=1nn+1,则S5等于()A.1B.56C.16D.130[答案]B[解析]an=1nn+1=1n-1n+1,∴S5=1-12+12-13+13-14+14-15+15-16=1-16=56.6.数列{an}中,已知对任意n∈N*,a1+a2+a3+…+an=3n-1,则a21+a22+a23+…+a2n等于()A.(3n-1)2B.12(9n-1)C.9n-1D.14(3n-1)[答案]B[解析]∵a1+a2+a3+…+an=3n-1,∴a1+a2+a3+…+an-1=3n-1-1(n≥2),两式相减得an=3n-3n-1=2·3n-1,又a1=2满足上式,∴an=2·3n-1.∴a2n=4·32n-2=4·9n-1,∴a21+a22+…+a2n=4(1+9+92+…+9n-1)=41-9n1-9=12(9n-1).二、填空题7.数列22,422,623,…,2n2n,…前n项的和为________.[答案]4-n+22n-1[解析]设Sn=22+422+623+…+2n2n①12Sn=222+423+624+…+2n2n+1②①-②得(1-12)Sn=22+222+223+224+…+22n-2n2n+1=2-12n-1-2n2n+1.∴Sn=4-n+22n-1.8.已知数列a1+2,a2+4,…,ak+2k,…,a10+20共有10项,其和为240,则a1+a2+…+ak+…+a10=________.[答案]130[解析]由题意,得a1+a2+…+ak+…+a10=240-(2+4+…+2k+…+20)=240-110=130.三、解答题9.求数列1,3a,5a2,7a3,…,(2n-1)an-1的前n项和.[解析]当a=1时,数列变为1,3,5,7,…,(2n-1),则Sn=n[1+2n-1]2=n2,当a≠1时,有Sn=1+3a+5a2+7a3+…+(2n-1)an-1,①aSn=a+3a2+5a3+7a4+…+(2n-1)an,②①-②得:Sn-aSn=1+2a+2a2+2a3+…+2an-1-(2n-1)an,(1-a)Sn=1-(2n-1)an+2(a+a2+a3+a4+…+an-1)=1-(2n-1)an+2·a1-an-11-a=1-(2n-1)an+2a-an1-a.又1-a≠0,所以Sn=1-2n-1an1-a+2a-an1-a2.10.(2014·全国大纲文,17)数列{an}满足a1=1,a2=2,an+2=2an+1-an+2.(1)设bn=an+1-an,证明{bn}是等差数列;(2)求{an}的通项公式.[解析](1)证明:由an+2=2an+1-an+2得an+2-an+1=an+1-an+2.即bn+1=bn+2.又b1=a2-a1=1.所以{bn}是首项为1,公差为2的等差数列.(2)由(1)得bn=1+2(n-1)=2n-1,即an+1-an=2n-1.于是k=1n(ak+1-ak)=k=1n(2k-1),所以an+1-a1=n2,即an+1=n2+a1.又a1=1,所以{an}的通项公式为an=n2-2n+2.一、选择题1.已知等差数列{an}和{bn}的前n项和分别为Sn,Tn,且SnTn=7n+1n+3,则a2+a5+a17+a22b8+b10+b12+b16=()A.315B.325C.6D.7[答案]A[解析]∵a2+a5+a17+a22b8+b10+b12+b16=a2+a22+a5+a17b8+b16+b10+b12=2a12+2a112b12+2b11=a11+a12b11+b12=a1+a22b1+b22,又∵S22T22=a1+a22×22b1+b22×22=a1+a22b1+b22,∴a1+a22b1+b22=7×22+122+3=315.∴a2+a5+a17+a22b8+b10+b12+b16=315.2.数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为()A.3690B.3660C.1845D.1830[答案]D[解析]不妨令a1=1,则a2=2,a3=a5=a7=…=1,a4=6,a6=10,…,所以当n为奇数时,an=1;当n为偶数时,各项构成以2为首项,4为公差的等差数列,所以前60项的和为30+2×30+30×30-12×4=1830.3.数列{an}的通项公式是an=2sin(nπ2+π4),设其前n项和为Sn,则S12的值为()A.0B.2C.-2D.1[答案]A[解析]a1=2sin(π2+π4)=1,a2=2sin(π+π4)=-1,a3=2sin(3π2+π4)=-1,a4=2sin(2π+π4)=1,同理,a5=1,a6=-1,a7=-1,a8=1,a9=1,a10=-1,a11=-1,a12=1,∴S12=0.4.已知等差数列{an}满足a5+a2n-5=2n(n≥3),则当n≥1时,2a1+2a3+…+2a2n-1=()A.22n-23B.22n+1-23C.2n-23D.2n+1-23[答案]B[解析]由a5+a2n-5=2n(n≥3),得2an=2n,∴an=n.∴2a1+2a3+…+2a2n-1=2+23+25+…+22n-1=21-4n1-4=22n+1-23.二、填空题5.设f(x)=12x+2,利用课本中推导等差数列前n项和的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为________.[答案]32[解析]f(0)+f(1)=11+2+12+2=22,f(x)+f(1-x)=12x+2+121-x+2=222x+2+2x22+2x=22,∴f(-5)+f(-4)+…+f(5)+f(6)=12[f-5+f6+f-4+f5+…+f6]+f-5=12×12×(f(0)+f(1))=32.6.求和1+(1+3)+(1+3+32)+(1+3+32+32)+…+(1+3+…+3n-1)=________.[答案]34(3n-1)-n2[解析]a1=1,a2=1+3,a3=1+3+32,……an=1+3+32+…+3n-1=12(3n-1),∴原式=12(31-1)+12(32-1)+……+12(3n-1)=12[(3+32+…+3n)-n]=34(3n-1)-n2.三、解答题7.(2013·浙江理,18)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,an;(2)若d0,求|a1|+|a2|+|a3|+…+|an|.[解析](1)由题意得a1·5a3=(2a2+2)2,a1=10,即d2-3d-4=0.故d=1或d=4.所以an=-n+11,n∈N*或an=4n+6,n∈N*.(2)设数列{an}的前n项和为Sn.因为d0,由(1)得d=-1,an=-n+11.则当n≤11时,|a1|+|a2|+|a3|+…+|an|=Sn=-12n2+212n.当n≥12时,|a1|+|a2|+|a3|+…+|an|=-Sn+2S11=12n2-212n+110.综上所述,|a1|+|a2|+|a3|+…+|an|=-12n2+212n,n≤11,12n2-212n+110,n≥12.8.已知数列{an}和{bn}中,数列{an}的前n项和为Sn.若点(n,Sn)在函数y=-x2+4x的图象上,点(n,bn)在函数y=2x的图象上.(1)求数列{an}的通项公式;(2)求数列{anbn}的前n项和Tn.[解析](1)由已知得Sn=-n2+4n,∵当n≥2时,an=Sn-Sn-1=-2n+5,又当n=1时,a1=S1=3,符合上式.∴an=-2n+5.(2)由已知得bn=2n,anbn=(-2n+5)·2n.Tn=3×21+1×22+(-1)×23+…+(-2n+5)×2n,2Tn=3×22+1×23+…+(-2n+7)×2n+(-2n+5)×2n+1.两式相减得Tn=-6+(23+24+…+2n+1)+(-2n+5)×2n+1=231-2n-11-2+(-2n+5)×2n+1-6=(7-2n)·2n+1-14.
本文标题:高中数学人教版必修5配套练习25等比数列的前n项和第2课时
链接地址:https://www.777doc.com/doc-5782974 .html