您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014年平行四边形的性质与判定测试题
2014年平行四边形的性质与判定测试题一.选择题(共8小题)1.下列说法中错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形为平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形2.如图,△ABC中,AB=AC=15,D在BC边上,DE∥BA于点E,DF∥CA交AB于点F,那么四边形AFDE的周长是()A.30B.25C.20D.153.如图所示,线段a、b、c的端点分别在直线l1、l2上,则下列说法中正确的是()A.若l1∥l2,则a=bB.若l1∥l2,则a=cC.若a∥b,则a=bD.若l1∥l2,且a∥b,则a=b4.如图,AB=CD,BF=ED,AE=CF,由这些条件能得出图中互相平行的线段共有()A.1组B.2组C.3组D.4组5.如图,已知在▱ABCD中,对角线AC,BD相交于点O,点E、F是AC上两点,点E、F的位置只须满足条件()时,四边形DEBF是平行四边形.A.点E、F分别为OA、OC的中点B.OE=OD,OF=OBC.OE=OA,OF=OCD.OE⊥BD,OF⊥BD6.如图,∠BAC=120°,AD⊥AC,BD=CD,则下列结论正确的是()A.AD=ACB.AB=ACC.AB=2ACD.AB=AC7.如图,平行四边形ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为()A.2B.2C.4D.428.下列说法正确的有()①平行四边形的对角线相等;②平行四边形的对边相等;③平行四边形的对角线互相垂直;④平行四边形的对角线互相平分;⑤两组对边分别相等的四边形是平行四边形;⑥一组对边平行而且另一组对边相等的四边形是平行四边形.A.4个B.3个C.2个D.1个二.填空题(共8小题)9.(2012•柳州二模)如图,已知等边△ABC的边长为8,P是△ABC内一点,PD∥AC,PE∥AD,PF∥BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF=_________.第9题第10题第11题10.如图所示,在▱ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有_________个平行四边形.11.如图,在▱ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE=S△ABE;⑥AF=CE这些结论中正确的是_________.12.如图,已知梯形ABCD,AD∥BC,∠B+∠C=90°,EF=10,E,F分别是AD,BC的中点,则BC﹣AD=_________.第12题第13题第14题13.六边形ABCDEF中,AB∥DE,BC∥EF,CD∥FA,且AB=4,BC=5,CD=6,DE=7,那么,六边形ABCDEF的周长是_________.14.如图,△ABC中,如果AB=30,BC=24,AC=27,DN∥GM∥AB,EG∥DF∥BC,FM∥EN∥AC,则图中阴影部分的三个三角形周长之和为_________.15.如图所示,木工师傅把曲尺的一边紧靠木板边缘,从曲尺的另一边上可以读出木板另一边缘的刻度,然后将曲尺移动到另一处(紧靠木板边缘),如果两次读数相同,说明木板两个边缘平行,其中道理是_________.16.等腰△ABC底边上任意一点D,AB=AC=5cm,过D作DE∥AC交AB于E,DF∥AB交AC于F,则四边形AEDF的周长为_________.三.解答题(共8小题)17.(2006•梧州)如图,在平行四边形ABCD中,BF=DE.求证:四边形AFCE是平行四边形.318.(2006•黄冈)如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.19.(2008•娄底)如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F.(1)求证:△ABE≌△DFE;(2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论.20.(2009•房山区一模)已知:如图,AD∥BC,AC⊥BD于O,AD+BC=5,AC=3,AE⊥BC于E.求AE的长.21.(2009•大兴区一模)已知:如图,在△ABC中,∠BAD=∠ACB,∠ABC的平分线交AD于E,AE=CF,连接EF.求证:BC=AB+EF.22.如图,△ABC中,BD平分∠ABC,DF∥BC,EF∥AC,试问BF与CE相等吗?为什么?423.如图,在平行四边形ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD交于点F、G,AF与BG交于点E.(1)求证:AF⊥BG,DF=CG;(2)若AB=10,AD=6,AF=8,求FG和BG的长度.24.(2013•牡丹江)在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=_________.52014年平行四边形的性质与判定测试题参考答案与试题解析一.选择题(共8小题)1.下列说法中错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形为平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形考点:平行四边形的判定与性质;平行线的性质.5430327专题:推理填空题.分析:根据平行四边形的性质即可判断A;根据图形和已知不能推出另一组对边也平行,即可判断B;根据平行四边形的判定判断即可;根据平行线性质和已知推出AD∥BC,根据平行四边形的判定判断即可.解答:解:A、根据平行四边形性质得出平行四边形的对角线互相平分,故本选项错误;B、∠A+∠D=180°,同时∠B+∠C=180°,只能推出AB∥CD,不一定是平行四边形,故本选项正确;C、AC于BD交于O,OA=OC,OB=OD,∴四边形ABCD是平行四边形,故本选项错误;D、∵AB∥CD,∴∠B+∠C=180°,∵∠B=∠D,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故本选项错误;故选B.点评:本题考查了对平行线的性质和平行四边形的性质和判定的应用,能理解性质并应用性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.2.如图,△ABC中,AB=AC=15,D在BC边上,DE∥BA于点E,DF∥CA交AB于点F,那么四边形AFDE的周长是()A.30B.25C.20D.15考点:平行四边形的判定与性质.5430327分析:因为AB=AC,所以△ABC为等腰三角形,由DE∥AB,可证△CDE为等腰三角形,同理△BDF也为等腰三角形,根据腰长相等,将线段长转化,求周长.解答:解:∵AB=AC=15,∴∠B=∠C,由DF∥AC,得∠FDB=∠C=∠B,6∴FD=FB,同理,得DE=EC.∴四边形AFDE的周长=AF+AE+FD+DE=AF+FB+AE+EC=AB+AC=15+15=30.故选A.点评:本题利用了两直线平行,同位角相等和等边对等角及等角对等边来把四边形的周长转移到AB和ACH上求解的.3.如图所示,线段a、b、c的端点分别在直线l1、l2上,则下列说法中正确的是()A.若l1∥l2,则a=bB.若l1∥l2,则a=cC.若a∥b,则a=bD.若l1∥l2,且a∥b,则a=b考点:平行四边形的判定与性质.5430327分析:根据平行四边形的判定方法:两组对边分别平行的四边形是平行四边形可判定出四边形ABCD是平行四边形,再根据平行四边形的性质可得a=b.解答:解:∵l1∥l2,a∥b,∴四边形ABCD是平行四边形,∴a=b,故选:D.点评:此题主要考查了平行四边形的性质与判定,关键是掌握平行四边形的判定方法与性质定理.4.如图,AB=CD,BF=ED,AE=CF,由这些条件能得出图中互相平行的线段共有()A.1组B.2组C.3组D.4组考点:平行四边形的判定与性质.5430327分析:根据已知利用全等三角形的判定及平行线的判定进行分析,从而得到答案.解答:解:由AB=CD,BF=ED,AE=CF可推出△BFC≌△DEA,△ABE≌△DCF,△ABD≌△CDB从而得到图中存在的平行线段有AB∥CD,AE∥CF,AD∥BC,共三组,故选C.点评:本题用到平行四边形的判定和性质,利用已知条件可求得三角形全等,进而求得对应角相等,两直线平行.5.如图,已知在▱ABCD中,对角线AC,BD相交于点O,点E、F是AC上两点,点E、F的位置只须满足条件()时,四边形DEBF是平行四边形.7A.点E、F分别为OA、OC的中点B.OE=OD,OF=OBC.OE=OA,OF=OCD.OE⊥BD,OF⊥BD考点:平行四边形的判定与性质.5430327分析:由于四边形ABCD是平行四边形,那么OB=OD,OA=OC,而点E、F分别为OA、OC的中点,易证OE=OF,那么两组对角线互相平分,故四边形DEBF是平行四边形.利用排除法可选正确答案.解答:解:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵点E、F分别为OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形DEBF是平行四边形.故选A.点评:本题考查了平行四边形的判定和性质,解题的关键是注意掌握两组对角线互相平分的四边形是平行四边形.6.如图,∠BAC=120°,AD⊥AC,BD=CD,则下列结论正确的是()A.AD=ACB.AB=ACC.AB=2ACD.AB=AC考点:含30度角的直角三角形;平行四边形的判定与性质.5430327分析:由题意作图延长AD到E,使DE=AD,连接BE、CE,证明四边形ABEC是平行四边形,AB=CE,在直角△ACE中即可对四个选项求解作出判断.解答:解:延长AD到E,使DE=AD,连接BE、CE,则四边形ABEC是平行四边形,∵∠BAC=120°,AD⊥AC,BD=CD∴∠AEC=30°则A中,故本选项错误;B中,故本选项错误;C中,故本选项正确;D中,故本选项错误.故选C.8点评:本题考查了含30度角的直角三角形,本题从每个选项中假设成立来论证.7.如图,平行四边形ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为()A.2B.2C.4D.4考点:勾股定理;直角三角形斜边上的中线;平行四边形的判定与性质.5430327分析:由平行四边形的性质及直角三角形的性质,推出△CDF为等边三角形,再根据勾股定理解答即可.解答:解:∵四边形ABCD是平行四边形∴AB∥CD,∴∠DCF=60°,又∵EF⊥BC,∴∠CEF=30°,∴CF=CE,又∵AE∥BD,∴AB=CD=DE,∴CF=CD,又∵∠DCF=60°,∴∠CDF=∠DFC=60°,∴CD=CF=DF=DE=2,∴EF====.故选B.点评:本题考查平行四边形的性质的运用.解题关键是利用平行四边形的性质结合三角形性质来解决有关的计算和证明.8.下列说法正确的有()①平行四边形的对角线相等;②平行四边形的对边相等;③平行四边形的对角线互相垂直;④平行四边形的对角线互相平分;⑤两组对边分别相等的四边形是平行四边形;⑥一组对边平行而且另一组对边相等的四边形是平行四边形.A.4个B.3个C.2个D.1个考点:平行四边形的判定与性质.5430327专题:常规题型.分析:平行四边形的对边相等,平行四边形的对角线互相平分,一组对边平行而且相等的四边形是平行四边形,9以此为依据即可对此题作出判断.解答:解:平行四边形的对角线互相平分,但对角线并不相等,也不互相垂直,所以①③错,④对;平行四边形的对边相等,②对;两组对边分别相等的四边形是平行四边形,⑤对;一组对边平行而且相等的四边形是
本文标题:2014年平行四边形的性质与判定测试题
链接地址:https://www.777doc.com/doc-5807100 .html