您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 三极管开关电路分析及Rb计算
11.输入电压Vin,输入电阻Rin,三极管导通电压取0.6V,三极管电流放大倍数是B,输出电阻(在C极的电阻)是Rout。这样很好计算了:5V/Rout=A,A/B=C,所以C是你最小的基极电流。如果你的输入电压Vin也用5V,那么(5-0.6)/C=Rin,你就可以选Rin了,为使三极管可靠饱和,选(5-0.6)/RinC就可以了。2.先求I先求Ic=Vc/RcIb=Ic/B基极电阻Rb=(Vb-Vbe)/Ibc=Vc/RcIb=Ic/B基极电阻Rb=(Vb-Vbe)/Ib举例:已知条件:输入Vi=5V,电源电压Vcc=5V,三极管直流放大系数beta=10.查规格书得,集-射饱和电压Vcesat=0.2V,此时集电极电流Ic=10mA(或其它值),则集电极电阻Rc=(Vcc-Vcesat)/Ic=(5-0.2)/10=480欧。则Ib=Ic/beta=10/10=1mA,基极限流电阻Rb=(Vi-Vbe)/Ib=(5-0.6)/1=4.4K,取为4.2K。这时要注意,输入高电平为5V是理想情况,有可能在2.5V(输入的一半)以上就为高了,这时我们以5V输入而得到的基极电流很可能不够,因此要重新计算。以2.5V为逻辑电平的阈值来计算,则Rb==(Vi-Vbe)/Ib=(2.5-0.6)/1=1.9K,取为1.8K,或2K。如何使三极管工作于开关状态如何使三极管工作于开关状态如何使三极管工作于开关状态如何使三极管工作于开关状态????晶体三极管的实际开关特性决定于管子的工作状态。晶体三极管输出特性三个工作区,即截止区、放大区、饱和区,如图4.2.1(b)所示。如果要使晶体三极管工作于开关的接通状态,就应该使之工作于饱和区;要使晶体三极管工作于开关的断开状态,就应该使之工作于截止区,发射极电流iE=0,这时晶体三极管处于截止状态,相当于开关断开。集电结加有反向电压,集电极电流iC=ICBO,而基极电流iB=-ICBO。说明三极管截止时,iB并不是为0,而等于-ICBO。基极开路时,外加电源电压VCC使集电结反向偏置,发射结正向偏置晶体三极管基极电流iB=0时,晶体管并未进入截止状态,这时iE=iC=ICEO还是较大的。晶体管进入截止状态,晶体管基极与发射极之间加反向电压,这时只存在集电极反向饱和电流ICBO,iB=-ICBO,iE=0,为临界截止状态。进一步加大基极电压的绝对值,当大于VBO时,发射结处于反向偏置而截止,流过发射结的电流为反向饱和电流IEBO,这时晶体管进入截止状态iB=-(ICBO+IEBO),iC=ICBO。发射结外加正向电压不断升高,集电极电流不断增加。同时基极电流也增加,随着基极电流iB的增加基极电位vB升高,而随着集电极电流iC的增加,集电极电位vC却下2降。当基极电流iB增大到一定值时,将出现vBE=vCE的情况。这时集电结为零偏,晶体管出现临界饱和。如果进一步增大iB,iB增大,使得集电结由零偏变为正向偏置,集电结位垒降低,集电区电子也将注入基区,从而使集电极电流iC随基极电流iB的增大而增大的速度减小。这时在基区存储大量多余电子-空穴对,当iB继续增大时,iC基本维持不变,即iB失去对iC的控制作用,或者说这时晶体管的放大能力大大减弱了。这时称晶体管工作于饱和状态。一般地说,在饱和状态时饱和压降VBE(sat)近似等于0.7V,VCE(sat)近似等于0.3V。由图4.2.1(a)可看出,集电极电流iC的增加受外电路的限制。由电路可得出iC的最大值为ICM=VCC/RC。晶体管进入饱和状态,基极电流增大,集电极电流变化很小,即iC=ICS=(VCC-VBE(sat))/RC晶体管处于临界饱和时的基极电流为IBS=ICS/β=(VCC-VBE(sat))/βRC基极电阻增大,驱动电流不足,特别是晶体管从放大区进入饱和区时时间太长,开关晶体管发热烧坏,因此此电阻的计算为:Rb《=Hfe*(Vb-0.7)/Icm在简易自动控制电路中,将介绍一些模拟实验电路,利用一些物理现象产生的力、热、声、光、电信号,实现自动控制,以达到某种控制效果。磁控和热控电路在磁力自动控制电路中,传感元件是干簧管,当磁铁靠近时,常开触点闭合而接通传感电路,完成位置传感作用。能不能用干簧管开关直接控制电动机的转与停呢?玩具电动机是常用的动力装置,它能够把电能转换为机械能,可用于小电风扇转动、小离心水泵抽水等执行功能。通常玩具直流电动机工作电压低,虽然在1.5~3V就可以启动,但起动电流较大(1~2安培),如果用触点负荷仅为几十毫安的干簧管进行开关控制,将大大缩短其使用寿命。因此,在自动控制电路中,常使用电子开关来控制电动机的工作状态。三极管电子开关电路见图1。由开关三极管VT,玩具电动机M,控制开关S,基极限流电阻器R和电源GB组成。VT采用NPN型小功率硅管8050,其集电极最大允许电流ICM可达1.5A,以满足电动机起动电流的要求。M选用工作电压为3V的小型直流电动机,对应电源GB亦为3V。VT基极限流电阻器R如何确定呢?根据三极管的电流分配作用,在基极输入一个较弱的电流IB,就可以控制集电极电流IC有较强的变化。假设VT电流放大系数hfe≈250,电动机起动时的集电极电流IC=1.5A,经过计算,为使三极管饱和导3通所需的基极电流IB≥(1500mA/250)×2=12mA。在图1电路中,电动机空载时运转电流约为500mA,此时电源(用两节5号电池供电)电压降至2.4V,VT基极-发射极之间电压VBE≈0.9V。根据欧姆定律,VT基极限流电阻器的电阻值R=(2.4-0.9)V/12mA≈0.13kΩ。考虑到VT在IC较大时,hfe要减小,电阻值R还要小一些,实取100Ω。为使电动机更可靠地启动,R甚至可减少到51Ω。在调试电路时,接通控制开关S,电动机应能自行启动,测量VT集电极—发射极之间电压VCE≤0.35V,说明三极管已饱和导通,三极管开关电路工作正常,否则会使VT过热而损坏。自动灭火的热量自动控制电路见图2。该电路是将图1中的控制开关S换成双金属复片开关ST,就成为热控电路了。当蜡烛火焰烧烤到双金属复片时,复片趋于伸直状态,使得开关ST接通,电动机启动,带动小风扇叶片旋转,对准蜡烛吹风,自动将火焰熄灭;当双金属片冷却后,开关断开,小电风扇自动停转,完成了自动灭火的程序。自动停车的磁力自动控制电路见图3。开启电源开关S,玩具车启动,行驶到接进磁铁时,安装在VT基极与发射极之间的干簧管SQ闭合,将基极偏置电流短路,VT截止,电动机停止转动,保护了电动机及避免大电流放电。光电控制电路在光电自动控制电路中,可以选用光敏电阻器做为光电传感元件。能否将光敏电阻器直接接入图1控制开关S的位置呢?通常光敏电阻器,例如MG45有光照射时的亮阻2~10kΩ,远大于偏置电阻器R的电阻值,显然不能产生维持VT饱和导通所需强度的基极电流。因此,需要先用一支三极管进行电流放大,再驱动开关三极管工作。光电自动控制电路见图4。VT1和VT2接成类似复合管电路形式,VT1的发射极电流也是VT2的基极电流,R2既是VT1的负载电阻器又是VT2的基极限流电阻器。因此,当VT1基极输入微弱的电流(0.1mA),4可以控制末级VT2较强电流——驱动电动机运转电流(500mA)的变化。VT1选用小功率NPN型硅管9013,hfe≈200。同前计算方法,维持两管同时饱和导通时VT1基极偏置电阻器R1约为3.3kΩ,减去光敏电阻器RG亮阻2kΩ,限流电阻器R1实取1kΩ。光敏传感器也可以采用光敏二极管,使用时要注意极性,光敏二极管的负极接供电电源正极。光敏二极管对控制光线有方向性选择,且灵敏度较高,也不会产生强光照射后的疲劳现象。水位控制电路最简单的水位传感元件是采用两个电极,当水面淹没电极时,利用不纯净水的导电性使电极之间导通,但导通电阻值较大,约50kΩ,不能代替光敏电阻器直接驱动如图4所示的光控电路,需要灵敏更高的控制电路。水位自动控制电路如图5所示。它是在图4电路的基础上,增加了一级前置放大管VT1,在其基极输入很微弱的电流(10μA)就可以使VT1~3皆饱和导通。控制开关S可以用大头针做成两个电极,当其被水淹没而导电时,小电动机会自行运转。C1为旁路电容器,防止感应交流电对控制电路的干扰。VT1选用低噪音、高增益的小功率NPN硅管9014。根据上述电路水位控制的功能,能否设计成一个感知下雨自动关窗、自动收晾晒衣服绳索的自动控制器。下偏置水自动控制电路见图6。图中,将两个电极改接在VT1下偏置,R1仍为上偏置电阻器。当杯内水面低于两个电极时,相当于下偏置开路,R1产生的偏置电流使电动机起动。当水位上升到淹没电极时,两个电极之间被水导通,将R1产生的偏置电流旁路一部分,使VT1~3截止,电动机停转,与图5控制效果恰好相反。//////******************************************************/////////5三极管的开关电路分析三极管的开关电路分析三极管的开关电路分析三极管的开关电路分析((((12V—SW))))在这里做个小电路的分析,大家都可能用到,这里把模型分解一下,并介绍一下计算方法和各个元件的作用。Q1:主开关,主要作用是提供12VSW电流,特点饱和时Vec必须很小,热阻不能太大。Q2:副开关,主要作用是旁路Q1,在MCU置高电平时导通,ce拉低使Q1工作。R1:保证MCU无输出的时候电路不工作。R2:限制电流,给Q2一个工作电流。C1:去除干扰,防止Q1意外导通。下面是这个电路图的等效模型:6然后我们定义一下输出负载,假设有N个按键开关电路检测电路(ActiveLow)经过以上分析我们可以列出所有公式:7这个时候我们可以看出,要想让这个电路处于良好的状态,两个开关管必须都处于饱和状态,一般要使得开关管饱和,Ic/Ib必须小于30.因此我们必须求取方法倍数,其中Q1中的Vbatt和Ib和Ic同时是正向关系,必须求取各个参数的偏导求最大的放大系数。8这样就可以求得此时三极管的状态。另外一个需要验证的就是温度情况,公式如下:9这个主要是验证散发功率的情况。计算过程到此差不多了,在实际设计中,每个参数都是比较重要的,特别是在省电模式下,可能会打开电源后扫描接口电路,因此整个电路的响应时间非常重要。以后会讨论一下瞬态响应的做法(Laplas变换的应用。)在这里大致可以描述一下,因为每个电路都有滤波电容,在打开电源的瞬间,所有的电容都需要充电,因此此时的Ic是非常大的,所以电路一时达不到饱和状态。这个参数主要是调整R2,R2增大,响应时间长,电路偏置功率小。R2减小,响应时间段,电路偏置功率大。做个tradeoff即可。
本文标题:三极管开关电路分析及Rb计算
链接地址:https://www.777doc.com/doc-5819457 .html