您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 汽车理论 > 基于Matlab的车牌识别系统设计论文
目录1绪论.................................................11.1车牌号识别研究背景..............................................11.2车牌号识别技术研究现状和趋势....................................21.3车牌识别研究内容................................................42车牌识别系统设计原理概述.............................63车牌识别系统程序设计.................................83.1开发环境选择....................................................83.2图像读取及车牌区域提取..........................................83.3字符切割.......................................................153.4字符识别.......................................................194仿真结果及分析......................................224.1车牌定位及图像读取及其图像处理.................................224.2车牌字符分割及其图像处理.......................................224.3车牌字符识别及其图像处理.......................................235结论................................................24参考文献...............................................25致谢...................................................26附录:程序清单.........................................2711绪论1.1车牌号识别研究背景随着我国公路交通事业的发展,车辆的数量正在迅速增长,在给出行提供方便的同时,车辆管理上存在的问题日益突出,人工管理的方式已经不能满足实际的需要。微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。作为信息来源的自动检测、图像识别技术越来越受到人们的重视。近年来计算机的飞速发展和数字图像技术的日趋成熟,为传统的交通管理带来巨大转变,先进的计算机处理技术,不但可以将人力从繁琐的人工观察、监测中解放出来,而且能够大大提高其精确度,汽车牌照自动识别系统就是在这样的背景与目的下进行开发的。汽车牌照等相关信息的自动采集和管理对于交通车辆管理、园区车辆管理、停车场管理、交警稽查等方面有着十分重要的意义,成为信息处理技术的一项重要研究课题。关于车牌识别技术及定位系统研究,在我国已经有了十几年的发展历程,目前系统的应用还处于起步阶段,大规模投入使用的成熟系统还没有出现,汽车牌照识别系统作为改进交通管理的有效工具,技术水平仍需完善。国内外学者对此已经有了较多工作,但实际效果并不理想,尤其是对车牌自适应性强、速度快、准确率高的高速车牌定位方法还有待进一步研究。另外,对辅助光源要求高,也很难有效解决复杂背景下多车牌移动识别的技术难题,如:车牌图像的倾斜、车牌表面污秽或磨损、光线干扰等都会影响定位的准确性。传统车牌识别一般仅支持单一车辆,背景比较简单。而当今许多实际应用场合,如在繁忙交通路口临时对欠税费、报废、挂失等车辆的稽查,则监视区域比较复杂,现有识别方法无法直接应用;而且多数情况下,同时出现多辆汽车,背景有广告牌、树木、建筑物、斑马线以及各种背景文字等,现有的识别方法也不能很好的适应多变的环境,所以对车牌识别技术的研究依然是目前高科技领域的热门课题之一。车牌识别系统的成功设计、开发和应用具有相当大的社会效益、经济效益和学术意义。车牌识别的难点:1)由于车牌图像多在室外采集,会受到光照条件、天气条件的影响,会出现图像模糊,对比度低,目标区域过小,色彩失真等影响,并且会伴随复杂的背景图像,这些都会影响车牌定位及识别。22)每次采集时目标所处位置不会一样,采集视角会有很大变化,并且由于车牌挂的不正,都将导致车牌出现扭曲。3)牌照多样性。其他国家的汽车牌照格式,如尺寸大小,牌照上字符的排列等,通常只有一种。而我国则根据不同车型、用途,规定了多种牌照格式,例如分为军车、警车、普通车等。我国标准车牌照是由汉字、英文字母和阿拉伯数字组成的,汉字的识别与字母和数字的识别有很大的不同,增加了识别的难度。4)我国汽车牌照的底色和字符颜色多样,蓝底白字、黄底黑字、黑底白字、红底黑字、绿底白字等多种。5)由于环境、道路或人为因素造成汽车牌照污染严重,这种情况下国外发达国家不允许上路,而在我国仍可上路行驶。使得车牌的对比度降低,特征不是很明显,即使在定位准确的情况下,字符的识别也会受到很大影响。目前在国内存在多种牌照格式,且存在以上种种困难和特殊性,加大了我国车牌自动识别的难度,使得中国车辆牌照识别远远难于国外的车辆牌照识别。因而如何提高识别率和识别处理的实时性及实用性成了一个紧要的任务。1.2车牌号识别技术研究现状和趋势1.2.1国内外车牌识别技术情况及我国车牌特点目前,一些发达国家车牌识剐系统在实际交通系统中已经成功应用,而我国的开发应用进展缓慢,基本停留在实验室阶段。这是因为我国的实际情况与国外有所区别。国外车牌比较规范统一,而我国车牌规范不够,较为多样化。不同汽车类型有不同的规格、大小和颜色,所以车牌的颜色多,且字符位数不统一,对处理造成了一定的困难。虽然很多研究人员已对车牌识别进行了较为深入的研究,但目前在车牌定位和字符分割这两个关键环节还存在着有待解决的难题。一是当车牌图像的对比度较小、光照不均匀、车牌磨损褪色以及有类似车牌纹理特征的干扰时,有效定位率下降;其次在车牌字符分割时,光照不均、对比度较小、倾斜、污迹、字符粘连和断裂等严重退化的车牌图像的字符分割效果也不理想。而对于车牌字符的识别来说,其识别的准确率很大程度上依赖于车牌定位和字符分割是否成功。车牌字符的识别作为最终对车牌图像的理解,可以借鉴光学字符识别的宝贵经验,相对于车牌定位和字符分割来说反而比较容易实现。3国内外有大量关于车牌识别方面的研究报道。国外在这方面的研究工作开展较早。在上世纪70年代,英国就在实验室中完成了“实时车牌检测系统”的广域检测和开发。同时代,诞生了面向被盗车辆的第一个实时自动车牌监测系统。发展到今日,国外对车牌检测的研究已经取得了一些令人瞩目的成就,识别率都在80%以上,甚至有高于90%。并且已经实现了产品化,并在实际的交通系统中得到了广泛的应用。由于中国车牌的格式与国外有较大差异,所以国外关于识别率的报道只具有参考价值,其在中国的应用效果可能没有在其国内的应用效果好,但其识别系统中采用的很多算法具有很好的借鉴意义。从车牌识别系统进入中国以来,国内有大量的学者在从事这方面的研究,提出了很多新颖快速的算法。中国科学院自动化所的刘智勇等开发的系统在一个样本量为3180的样本集中,车牌定位准确率为99.42%,切分准确率为94.52%,这套系统后来应用于汉王公司的车牌识别系统,取得了不错的效果。但是包括其他研究人员提出的算法,都存在计算量和存储量大的问题,难以满足实时性的要求。此外,当车辆区域的颜色和附近颜色相近时,定位失误率会增加。国内还有许多学者一直在进行这方面的研究,并且取得了大量的研究成果。目前我国有普通地方车牌号、武警车牌号、军队车牌号三种类型,普通地方车牌号又叫自选号牌车牌(如图1所示),自选号牌车牌尺寸是520122.5MM,即车牌长宽比为4.5:1,一共7个字符,每个字符的高宽比为2:1。首个字符为中文字符,为各个省或直辖市的简称,第二个字符为英文大写字符,前两个字符确定该车牌所在地,后五个字符由阿拉伯数字及英文大写字符组合而成,并且后五个字符间距相同,七个字符大小也相同。图1.1我国车牌号示例41.2.2车牌识别技术的应用前景车辆牌照自动识别技术是智能交通系统的一个重要组成部分,广泛应用于交通的监控及管理。车辆牌照识别系统技术能够从一幅车辆图像中准确定位出车牌区域,然后经过字符切割和识别实现车辆牌照的自动识别。目前车牌识别系统主要应用于以下领域:1)停车场管理系统。利用车牌识别技术对出入车辆的号牌进行识别和匹配,与停车卡结合实现自动计时、计费的车辆收费管理系统。2)公路自动管理系统。以车牌自动识别技术为基础,与通信等其他高科技结合,对高速公路交通流状况进行自动监测、自动布控,从而降低交通事故的发生率,确保交通顺畅。3)安防布控。采用车牌识别技术实现对车辆的自动识别,快速报警,既可以有效查找被盗车辆,同时又为公安机关提供了对犯罪嫌疑人的交通工具进行远程跟踪与监查的技术手段。4)城市十字交通路口的“电子警察”。可以对违章车辆进行责任追究,也可以辅助进行交通流量统计,交通监测和疏导。5)小区、校园车辆管理系统。社区保安系统将出入的车辆通过车牌识别技术进行记录,将结果与内部车辆列表对比可以实现防盗监管。1.3车牌识别研究内容车牌系统是计算机视觉和模式识别技术在智能交通领域的重要应用课题之一。车牌识别系统是一特定目标位对象的专用计算机系统,该系统能从一幅图像中自动提取车牌图像、自动分割自符,进而对分割自符的图像进行图像识别。系统一般由硬件和软件构成。硬件设备一般由车体感应设备、辅助光源、摄像机、图像采集卡和计算机。软件部分是系统的核心,主要实现车牌自符的识别功能。车牌识别学科主要有模式识别、人工智能、图像处理、计算机视觉和信号处理等。这些领域的许多技术都可以应用到车牌识别系统中,车牌识别技术的研究也必然推动这些相关学科的发展。车牌识别的关键技术有:车牌定位、字符切割和字符识别等。车牌定位是要完成从图像中确定车牌位置并提取车牌区域图像,目前常用的方法有:基于直线检测的方法、机遇与域值化的方法、基于灰度边缘检测方法、基于彩色5图像的车牌分割方法、神经网络法和基于矢量量化的牌照的定位的方法等。字符切割时完成车牌区域图像的切分处理从而得到所需要的单个字符图象。目前常用的方法有:基于投影的方法和基于连通字符的提取等方法。字符识别是利用字符识别的原理识别提取出的字符图像,目前常用的方法有:基于模板匹配的方法、基于特征的方法和神经网络法等。62车牌识别系统设计原理概述一个完整的车牌号识别系统要完成从图像采集到字符识别输出,过程相当复杂,基本可以分成硬件部分跟软件部分,硬件部分包括系统触发、图像采集,软件部分包括图像预处理、车牌位置提取、字符分割、字符识别四大部分,一个车牌识别系统的基本结构如图2.1所示:图2.1车牌识别系统基本结构框图一:原始图像:由停车场固定彩色摄像机、数码相机或其他扫描装置拍摄到的图像。二:图像预处理:对动态采集到的图像进行滤波,边界增强等处理以克服图像处理。三:车牌位置提取:通过运算得到图像的边缘,再计算边缘图像的投影面积,寻找谷峰点以大概确定车牌的位置,再计算连通域的宽高比,剔除不在阈值范围内的连通域,最后便得到了车牌区域。四:字符分割:利用投影检测的字符定位分割方法得到单个的字符。五:字符识别:利用模板匹配的方法与数据库中的字符进行匹配从而确认出字符。六:输出结果:得到最后的汽车牌照,包括汉字、字母和数字。车牌号图像识别要进行牌照号码、颜色识别。为了进行牌照识别,需要以下几个基本的步骤:a.牌照定位,定位图片中的牌照位置;b.牌照字符分割,把牌照中的字符分割出来;c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。牌照识别过程中,牌照颜色的识别依据算法不
本文标题:基于Matlab的车牌识别系统设计论文
链接地址:https://www.777doc.com/doc-5831415 .html