您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 人事档案/员工关系 > 六年级公约公倍数应用题应用题
公约公倍数应用题【含义】需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。【数量关系】绝大多数要用最大公约数、最小公倍数来解答。【解题思路和方法】先确定题目中要用最大公约数或者最小公倍数,再求出答案。最大公约数和最小公倍数的求法,最常用的是“短除法”。例1一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?解硬纸板的长和宽的最大公约数就是所求的边长。60和56的最大公约数是4。答:正方形的边长是4厘米。例2甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?解要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。36、30、48的最小公倍数是720。答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。例3一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?解相邻两树的间距应是60、72、96、84的公约数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公约数12。所以,至少应植树(60+72+96+84)÷12=26(棵)答:至少要植26棵树。例4一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。又知棋子总数在150到200之间,求棋子总数。解如果从总数中取出1个,余下的总数便是4、5、6的公倍数。因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为60×3+1=181(个)答:棋子的总数是181个。
本文标题:六年级公约公倍数应用题应用题
链接地址:https://www.777doc.com/doc-5836444 .html