您好,欢迎访问三七文档
1497年7月9日到1498年5月30日,葡萄牙航海家达伽马(VascodaGama)发现绕过非洲到达印度的航线,他的160个船员中,有100多人死于坏血病。1519年,葡萄牙航海家麦哲伦率领的远洋船队从南美洲东岸向太平洋进发。三个月后,有的船员牙床破裂了,有的船员流鼻血,有的船员浑身无力,待船到达目的地时,原来的200多人,活下来的只有35人,人们对此找不出原因。因为他们在航行时的食物是面饼、鱼和咸肉,含有很少的维生素C。维生素C主要内容一、概述二、维生素C与生活三、维生素C的生产工艺一、概述1.维生素2.维生素C维生素(vitamin)是人和动物为维持正常的生理功能而必需从食物中获得的一类微量有机物质,在人体生长、代谢、发育过程中发挥着重要的作用。维生素种类繁多,化学架构与生理功能各异。如我们比较常见的有维生素A、维生素C、B族维生素、维生素D、维生素E、维生素K等。1.维生素按照维生素溶解性能的不同,可以分为脂溶性维生素和水溶性维生素两大类。水溶性维生素是指可溶于水的维生素,包括B族维生素和维生素C。脂溶性维生素是指不溶于水而溶于脂肪及有机溶剂(如苯、乙醚及氯仿等)中的维生素,包括维生素A、维生素D、维生素E、维生素K四大类。2.维生素C2.1定义维生素C又称抗坏血酸,是一个含有6个碳原子的α-酮基内酯的酸性多羟基化合物。是一种水溶性维生素,水果和蔬菜中含量丰富。在氧化还原代谢反应中起调节作用,缺乏它可引起坏血病。分子式:C6H8O6Vc的分子模型2.2理化性质白色粉末,无臭、味酸、熔点190-192℃,易溶于水,略溶于乙醇,不溶于乙醚,氯仿及石油醚等。它是一种还原剂,易受光、热、氧等破坏,尤其在碱液中或有微量金属离子存在时,分解更快,但干燥结晶较稳定。二、维生素C与生活1.维生素C的基本功效2.维生素C适宜人群3.富含维生素C的食物4.维生素C的吸收与代谢5.维生素C的摄入与健康1.维生素C的基本功效1胶原蛋白的合成2坏血病3牙龈萎缩、出血6治疗贫血7防癌4预防动脉硬化5抗氧化剂8保护细胞、解毒,保护肝脏9提高人体的免疫力10提高机体的应急能力2.维生素C适宜人群a.容易疲倦的人。b.在污染环境工作的人。c.嗜好抽烟的人。d.从事剧烈运动和高强度劳动的人。e.坏血病患者。f.脸上有色素斑的人。g.长期服药的人。h.白内障患者。易疲倦可服维C煤矿工人抽烟的人抑制色斑生成白内障患者应多补充维C3.富含维生素C的食物排名食物分量(g)数量维生素C量(mg)1樱桃5012粒5002番石榴801个2163红椒801/3个1364黄椒801/3个1205柿子1501个1056青花菜61/4株967草莓1006粒808橘子1301个789芥蓝菜花601/3株7210猕猴桃1001个68樱桃番石榴红椒黄椒柿子青花菜草莓橘子芥蓝菜花猕猴桃4.维生素C的吸收与代谢(1)吸收吃入的维生素C通常在小肠上方被吸收,而仅有少量被胃吸收,同时口中的黏膜也吸收少许。未吸收的维生素C会直接转送到大肠中,被肠内微生物分解成气体物质,无任何作用。(2)代谢维生素C在体内的代谢过程及转换方式,目前仍无定论,但可以确定维生素C最后的代谢物是由尿液排出。草酸是维生素C的其中一个代谢产物,它的排出量因人而异,平均一天有16-64MG的草酸由尿中排出。维生素C经由肾脏排泄,所以肾脏具有调节维生素C排泄率的功能。当组织中维生素C达饱和量时,排泄量会增多;当组织含量不足时,排泄量则减少。5.维生素C的摄入与健康1、成人及孕早期妇女维生素C的推荐摄入量为100mg/d;2、中、晚期孕妇及乳母维生素C的推荐摄入量为130mg/d。注意:人体每天摄入的维生素C的量都要适当,过多摄入或过少摄入都会对身体造成一定的影响。维生素C缺乏症维生素C缺乏后数月,患者感倦怠、全身乏力、精神抑郁、多疑、虚弱、厌食、营养不良、面色苍白、轻度贫血、牙龈肿胀、出血,并可因牙龈及齿槽坏死而致牙齿松动、脱落,骨关节肌肉疼痛,皮肤瘀点、瘀斑,毛囊过度角化、周围出血,小儿可因骨膜下出血而致下肢假性瘫痪、肿胀、压痛明显,髋关节外展,膝关节半屈,足外旋,蛙样姿势。维生素C是不是越多越好??1、短期内服用VC补充品过量,会产生多尿、下痢、皮肤发疹等副作用;2、长期服用过量VC补充品,可能导致草酸及尿酸结石。3、小儿生长时期过量服用,容易产生骨骼疾病。4、一次性摄入VC2500-5000毫克以上时,可能会导致红细胞大量破裂,出现溶血等危重现象。三、维生素C的生产工艺1、莱氏法化学合成工艺2、两步发酵工艺1、莱氏法化学合成工艺维生素C生产工艺1、莱氏法化学合成工艺(CH3)2COCH2OHCCCCCHOHOHOHHOHHHOHCH2OHCCCCCH2OHHHOH3CH3CCH3CH3OH2CH2OHCCCCCH2OHHOHOHHOHHHOHO2COOHCCCCCH2OHHOHHOHOHOHH2SO4KMnO4NaOHO2OCCCCCH2CHOOHHHOHOOHCH2OHCCCCCH2OHHOHHOHOHOHCOOHCCCCCH2OHHHOH3CH3CCH3CH3O内酯化烯醇化D-葡萄糖D-山梨醇L-山梨醇双丙酮-L-山梨糖双丙酮-L-古龙酸2-酮基-L-古龙酸维生素-CH2O(1)工艺路线[转化][酸化]HCl[氧化]NaOH,O2,KMnO4[酮化]H2SO4丙酮[加氢]H2D-葡萄糖D-山梨醇双丙酮-L-山梨糖维生素CL-山梨糖[酶菌氧化]O2双丙酮-L-古龙酸2-酮-L-古龙酸维生素C生产工艺(2)工艺过程①山梨醇发酵菌种醋酸菌属可使山梨醇氧化成山梨糖②发酵条件温度为26-30℃,最适pH为4.4-6.8。pH4.0以下菌的活性受影响。用0.5%酵母浸膏为主要营养源,山梨醇浓度为19.8%,通气量1800ml/min,30℃培养33h,山梨糖收率可达97.6%。氮源:无机氮源不能利用,使用有机氮源。金属离子的影响:Ni2+、Cu2+能阻止菌的发育,铁能妨碍发酵,为了使发酵顺利进行,需用阳离子交换树脂将山梨醇中的金属离子去掉。整个合成过程中必须保持第4位碳原子的构型不变;维生素C的总收率约60%。C-4内酯化、C-2烯醇化:酸转化:2-酮基-L-古龙酸:38%盐酸:丙酮=1:0.4:0.3(质量/体积)碱转化:先形成2-酮基-L-古龙酸甲酯,加NaHCO3转化生成维生素C钠盐,经氢型离子交换树脂酸化,在50-55℃下减压烘干,得粗品维生素C。2、两步发酵工艺CH2OHCCCCCHOHOHOHHOHHHOHH2CH2OHCCCCCH2OHHOHOHHOHHHOHO2CH2OHCCCCCH2OHHOHHOHOHOHCOOHCCCCCH2OHHOHHOHOHOHOCCCCCH2CHOOHHHOHOOH内酯化烯醇化D-葡萄糖D-山梨醇L-山梨醇2-酮基-L-古龙酸维生素-C氢化AcetobacterPseudomonas2、两步发酵工艺2-酮-L-古龙酸[内酯化,烯醇化][生物转化]假单孢菌D-山梨醇维生素C(L-抗坏血酸)L-山梨糖[氧化]醋酸杆菌2、两步发酵工艺(1)D-山梨醇的化学合成50%葡萄糖溶液在75℃下加入活性炭,用石灰乳液调节pH8.4,加镍催化剂,通氢气,压力3.43MPa,反应温度140℃。反应结束后,静置沉降出去催化剂,反应液经离子交换树脂、活性炭处理后,减压浓缩,得到含量60-70%的D-山梨醇,无色透明或微黄色透明粘稠液体,收率约97%。2、两步发酵工艺(2)2-酮-L-古龙酸的微生物发酵第一步发酵:黑醋酸杆菌(从D-山梨醇到L-山梨糖)第二步发酵:葡萄糖酸杆菌和巨大芽孢杆菌混合培养发酵罐:气升式反应器,100立方米。(3)2-酮-L-古龙酸的分离纯化发酵液中:2-酮-L-古龙酸8%,杂质有菌丝体、蛋白质和悬浮的固体颗粒等。除杂操作:加热、离心。莱氏法是最早生产维生素C的方法,其以葡萄糖为原料,先经黑醋菌发酵生成L-山梨糖,再经丙酮化及NaClO氧化、水解得到2-酮-L古龙酸钠,然后进行化学合成得到维生素C。此法存在着很多缺陷,如生产工艺复杂、劳动强度大、生产环境恶劣、易对人体造成伤害,因此人们不断对此工艺进行改进。两步发酵工艺发酵:此法省略了酮化和NaClO氧化过程,简化了工艺,极大地改善了操作环境。除主耗山梨醇消耗较高外,其他辅料消耗较低。且多为液体反应,物料输送方便,更有利于生产连续化和操作自动化。但此法仍存在很多缺点,如占地面积大、发酵基质浓度低、在高湿高温条件下染菌机率高、设备利用率低、后续处理能耗高等问题。在未来的工艺优化过程中,除了进行发酵工艺改进外,更应注重优良菌种的选育。发酵液的提取工艺是维生素C生产行业中较为重视的问题。经过两次发酵后,发酵液的含量仅为6%~9%,且残留有菌丝体、蛋白质和悬浮微粒等,分离提纯较为困难。两步发酵工艺传统的处理方法有加热沉淀法和化学凝聚法。针对以上两种方法中存在的缺点和不足,一种新的处理方法———超滤法在维生素生产中得以应用。此法具有操作方便、节能、不造成新的环境污染等优点。此法与加热沉淀法相比,可在常温下操作,减少了有效成分的损失;且为后步树脂交换提供了有利的条件,减少了树脂的污染,从而有利于提高树脂的使用率。与化学凝聚法相比,在处理染菌的发酵液时仍可达到较好的处理效果。随着新型膜材料技术的开发,如陶瓷膜、不锈钢膜等的应用,超滤法的应用效果会有进一步的提高。同时,国内外正在探索反渗透、纳滤等后序处理新工艺的应,用完善工艺联结。两步发酵工艺转化工艺(1)酸转化法。传统的酸转化法是采用浓HCl将古龙酸直接转化为Vc,但酸转化对设备的腐蚀严重,污染环境,影响产品质量,现已逐渐被碱转化法所取代。(2)碱转化法。碱转化法是先将古龙酸与甲醇在浓硫酸催化作用下生成古龙酸甲酯,再使用NaHCO3进行碱转化,使古龙酸甲酯转化为Vc-Na。采用此法可避免酸转化的缺点,且操作简单,适用于Vc的规模化生产,但是碱转化存在着反应周期较长,甲醇单耗高。目前有些单位及生产厂家研究采用CH3ONa代替NaHCO3进行碱转化,此法转化率高,可达9216%,但质量较差,且甲醇钠价格贵,造成成本较高。两步发酵工艺酸化酸化是将维生素C-Na转变为维生素C的过程。目前采用的普遍方法是硫酸酸化法和树脂交换法。采用硫酸酸化操作简单,但要控制好甲醇的浓度和pH值,才能使硫酸钠与维生素C分离出来,从而提高Vc的质量。采用氢型离子树脂交换设备庞大,操作复杂,且需经常再生树脂,增加了酸耗,酸液大量排放污染环境。目前有些单位及个人正在探索使用电渗析法代替传统的酸化方法,此法过程简单,能耗低,投资少,转化率高,可望应用到实际生产中。[转化][酸化]HCl[氧化]NaOH,O2,KMnO4[酮化]H2SO4丙酮[加氢]H2D-葡萄糖D-山梨醇双丙酮-L-山梨糖维生素CL-山梨糖[酶菌氧化]O2双丙酮-L-古龙酸2-酮-L-古龙酸维生素C生产工艺生产过程如下:(1)第一步发酵以D-葡萄糖为原料,加氢催化生成D-山梨醇,再加入假单孢杆菌氧化获得L-山梨糖。(2)第二步发酵L-山梨糖通过小菌氧化葡萄糖酸杆菌和大菌巨大芽孢杆菌、蜡状芽孢杆菌等伴生菌混合发酵得维生素C前体2-酮基-L-古龙酸。(3)提取采用弱碱性离子交换树脂从发酵液中直接提取2-酮基-L-古龙酸,用甲醇-硫酸溶液洗脱,将洗脱液直接内酯化、烯醇化为维生素C。两步发酵工艺(4)精制将上述维生素C通过活性炭脱色,于结晶罐内加入晶种结晶,冷乙醇洗涤,低温干燥,即可获得精品维生素C。在生产中,第一步要严格控制反应过程的pH为8.0~8.5,避免葡萄糖的C-2位差向异构物被还原成甘露醇。整个发菌期间,要保持葡萄糖酸杆菌数量的一定,小菌将L-山梨糖转化为2-KLG,而大菌本身不产酸,是搭配菌,其作用仅是通过刺激小菌的生长而促进小菌产酸。2-酮基-L-古龙酸首先在甲酯中用浓硫酸催化酯化成2-酮基-L-古龙酸甲酯,再加入碳酸氢钠转化成维生素C盐,经离子交换树脂酸化
本文标题:维生素课件
链接地址:https://www.777doc.com/doc-5858031 .html