您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 完全平方公式1人教版八年级上册数学教案
14.2.2完全平方公式1.会推导完全平方公式,并能运用公式进行简单的运算.(重点)2.灵活运用完全平方公式进行计算.(难点)一、情境导入1.教师引导学生复习平方差公式.学生积极举手回答.平方差公式:(a+b)(a-b)=a2-b2.2.教师肯定学生的表现,并讲解:这节课我们学习另一种特殊形式的多项式与多项式相乘——完全平方公式.二、合作探究探究点一:完全平方公式【类型一】直接运用完全平方公式进行计算利用完全平方公式计算:(1)(5-a)2;(2)(-3m-4n)2;(3)(-3a+b)2.解析:直接运用完全平方公式进行计算即可.解:(1)(5-a)2=25-10a+a2;(2)(-3m-4n)2=9m2+24mn+16n2;(3)(-3a+b)2=9a2-6ab+b2.方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”.【类型二】构造完全平方式如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值.解析:先根据两平方项确定出这两个数,再根据完全平方公式确定m的值.解:∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2·6x·5y,∴m+1=±60,∴m=59或-61.方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【类型三】运用完全平方公式进行简便运算利用乘法公式计算:(1)982-101×99;(2)20162-2016×4030+20152.解析:原式变形后,利用完全平方公式及平方差公式计算即可得到结果.解:(1)原式=(100-2)2-(100+1)(100-1)=1002-400+4-1002+1=-395;(2)原式=20162-2×2016×2015+20152=(2016-2015)2=1.方法总结:运用完全平方公式进行简便运算,要熟记完全平方公式的特征,将原式转化为能利用完全平方公式的形式.【类型四】灵活运用完全平方公式求代数式的值已知x-y=6,xy=-8.(1)求x2+y2的值;(2)求代数式12(x+y+z)2+12(x-y-z)(x-y+z)-z(x+y)的值.解析:(1)由(x-y)2=x2+y2-2xy,可得x2+y2=(x-y)2+2xy,将x-y=6,xy=-8代入即可求得x2+y2的值;(2)首先化简12(x+y+z)2+12(x-y-z)(x-y+z)-z(x+y)=x2+y2,由(1)即可求得答案.解:(1)∵x-y=6,xy=-8,∴(x-y)2=x2+y2-2xy,∴x2+y2=(x-y)2+2xy=36-16=20;(2)∵12(x+y+z)2+12(x-y-z)(x-y+z)-z(x+y)=12(x2+y2+z2+2xy+2xz+2yz)+12[(x-y)2-z2]-xz-yz=12x2+12y2+12z2+xy+xz+yz+12x2+12y2-xy-12z2-xz-yz=x2+y2,又∵x2+y2=20,∴原式=20.方法总结:通过本题要熟练掌握完全平方公式的变式:(x-y)2=x2+y2-2xy,x2+y2=(x-y)2+2xy.【类型五】完全平方公式的几何背景我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2-(a-b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b)B.(a-b)(a+2b)=a2+ab-2b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+2ab+b2解析:空白部分的面积为(a-b)2,还可以表示为a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故选C.方法总结:通过几何图形之间的数量关系对完全平方公式做出几何解释.探究点二:添括号后运用完全平方公式计算:(1)(a-b+c)2;(2)(1-2x+y)(1+2x-y).解析:利用整体思想将三项式转化为二项式,再利用完全平方公式或平方差公式求解,并注意添括号的符号法则.解:(1)原式=[(a-b)+c]2=(a-b)2+c2+2(a-b)c=a2-2ab+b2+c2+2ac-2bc=a2+b2+c2-2ab+2ac-2bc;(2)原式=[1+(-2x+y)][1-(-2x+y)]=12-(-2x+y)2=1-4x2+4xy-y2.方法总结:利用完全平方公式进行计算时,应先将式子变成(a±b)2的形式.注意a,b可以是多项式,但应保持前后使用公式的一致性.三、板书设计完全平方公式1.探究公式:(a±b)2=a2±2ab+b2;2.完全平方公式的几何意义;3.利用完全平方公式计算.本节的探讨方式和上节类似,都是通过“做一做”和“试一试”让学生在代数和几何两方面理解完全平方公式.完全平方公式分为两数和的平方和两数差的平方两种形式,教学中可以将两个公式写作一个公式:(a±b)2=a2±2ab+b2,有助于学生的记忆.在探究两数差的平方公式时,因为学生通过前面的学习已经掌握了几何的说明方法,因此可以让学生自己画图证明.
本文标题:完全平方公式1人教版八年级上册数学教案
链接地址:https://www.777doc.com/doc-5873931 .html