您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第1课时图形面积的最大值2北师大版九年级下册数学教案
课时图形面积的最大值教学思路(纠错栏)教学目标:1、会利用二次函数的知识解决面积最值问题.2、经过面积、利润等最值问题的教学,学会分析问题,解决问题的方法,并总结和积累解题经验.教学重点:利用二次函数求实际问题的最值.预设难点:对实际问题中数量关系的分析.☆预习导航☆一、链接:(1)在二次函数cbxaxy2(0a)中,当a0时,有最值,最值为;当a0时,有最值,最值为.(2)二次函数y=-(x-12)2+8中,当x=时,函数有最值为.二、导读在21.1问题1(P2)中,要使围成的水面面积最大,那么它的长应是多少?它的最大面积是多少?分析:这是一个求最值的问题。要想解决这个问题,就要首先将实际问题转化成数学问题。在前面的教学中我们已经知道,这个问题中的水面长x与面积S之间的满足函数关系式S=-x2+20x。通过配方,得到S=-(x-10)2+100。由此可以看出,这个函数的图象是一条开口向下的抛物线,其顶点坐标是(10,100)。所以,当x=10m时,函数取得最大值,为S最大值=100(m2)。所以,当围成的矩形水面长为10m,宽为10m时,它的面积最大,最大面积是100m2。☆合作探究☆问题:某商场的一批衬衣现在的售价是60元,每星期可买出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知该衬衣的进价为40元,如何定价才能使利润最大?①问题中定价有几种可能?涨价与降价的结果一样吗?②设每件衬衣涨价x元,获得的利润为y元,则定价元,每件利润为元,每星期少卖件,实际卖出页教学思路(纠错栏)件。所以Y=。(0X30)何时有最大利润,最大利润为多少元?③设每件衬衣降价x元,获得的利润为y元,则定价为元,每件利润为元,每星期多卖件,实际卖出件。所以Y=。(0X20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆归纳反思☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆达标检测☆1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为,当边长为时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?页
本文标题:第1课时图形面积的最大值2北师大版九年级下册数学教案
链接地址:https://www.777doc.com/doc-5875553 .html