您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 第3课时平方根1人教版七年级下册数学教案
第3课时平方根1.了解平方根的概念,会用根号表示一个数的平方根;(重点)2.了解开平方与平方是互逆运算,会用开平方运算求非负数的平方根.(难点)一、情境导入填空:(1)3的平方等于9,那么9的算术平方根就是________;(2)25的平方等于425,那么425的算术平方根就是________;(3)展厅的地面为正方形,其面积49平方米,则边长为________米.还有平方等于9,425,49的其他数吗?二、合作探究探究点一:平方根的概念及性质【类型一】求一个数的平方根求下列各数的平方根:(1)12425;(2)0.0001;(3)(-4)2;(4)10-6;(5)81.解析:把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根.解:(1)∵12425=4925,(±75)2=4925,∴12425的平方根为±75,即±12425=±75;(2)∵(±0.01)2=0.0001,∴0.0001的平方根是±0.01,即±0.0001=±0.01;(3)∵(±4)2=(-4)2,∴(-4)2的平方根是±4,即±(-4)2=±4;(4)∵(±10-3)2=10-6,∴10-6的平方根是±10-3,即±10-6=±10-3;(5)∵(±3)2=9=81,∴81的平方根是±3.方法总结:正确理解平方根的概念,明确是求哪一个数的平方根.如(5)中是求9的平方根.【类型二】利用平方根的性质求值一个正数的两个平方根分别是2a+1和a-4,求这个数.解析:因为一个正数的平方根有两个,且它们互为相反数,所以2a+1和a-4互为相反数,根据互为相反数的两个数的和为0列方程求解.解:由于一个正数的两个平方根是2a+1和a-4,则有2a+1+a-4=0,即3a-3=0,解得a=1.所以这个数为(2a+1)2=(2+1)2=9.方法总结:一个正数的平方根有两个,它们互为相反数,即它们的和为零.探究点二:开平方及相关运算求下列各式中x的值:(1)x2=361;(2)81x2-49=0;(3)49(x2+1)=50;(4)(3x-1)2=(-5)2.解析:若x2=a(a≥0),则x=±a,先把各题化为x2=a的形式,再求x.其中(4)中可将(3x-1)看作一个整体,先通过开平方求出这个整体的值,然后解方程求出x.解:(1)∵x2=361,∴开平方得x=±361=±19;(2)整理81x2-49=0,得x2=4981,∴开平方得x=±4981=±79;(3)整理49(x2+1)=50,得x2=149,∴开平方得x=±149=±17;(4)∵(3x-1)2=(-5)2,∴开平方得3x-1=±5.当3x-1=5时,x=2;当3x-1=-5时,x=-43.综上所述,x=2或-43.方法总结:利用平方根的定义进行开平方解方程,从而求出未知数的值.一个正数的平方根有两个,它们互为相反数;开平方时,不要漏掉负平方根.三、板书设计1.平方根的概念:若x2=a,则x叫a的平方根,x=±a.2.平方根的性质:正数有两个平方根,且它们互为相反数;0的平方根是0;负数没有平方根.3.开平方及相关运算:求一个数a的平方根的运算叫做开平方,其中a叫做被开方数.开平方与平方互为逆运算.为学生提供有趣且富有数学含义的问题,让学生进行充分的探索和交流.如把正方形的面积不断地扩大为原来的2倍、3倍、n倍,引导学生进行交流、讨论与探索,从中感受学习平方根的必要性
本文标题:第3课时平方根1人教版七年级下册数学教案
链接地址:https://www.777doc.com/doc-5876356 .html