您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 人教A版数学必修一教案222对数函数及其性质第12课时
§2.2.2对数函数及其性质(第一、二课时)一.教学目标1.知识技能①对数函数的概念,熟悉对数函数的图象与性质规律.②掌握对数函数的性质,能初步运用性质解决问题.2.过程与方法让学生通过观察对数函数的图象,发现并归纳对数函数的性质.3.情感、态度与价值观①培养学生数形结合的思想以及分析推理的能力;②培养学生严谨的科学态度.二.学法与教学用具1.学法:通过让学生观察、思考、交流、讨论、发现函数的性质;2.教学手段:多媒体计算机辅助教学.三.教学重点、难点1、重点:理解对数函数的定义,掌握对数函数的图象和性质.2、难点:底数a对图象的影响及对数函数性质的作用.四.教学过程1.设置情境在2.2.1的例6中,考古学家利用157302logP估算出土文物或古遗址的年代,对于每一个C14含量P,通过关系式,都有唯一确定的年代t与之对应.同理,对于每一个对数式logxay中的x,任取一个正的实数值,y均有唯一的值与之对应,所以logxayx关于的函数.2.探索新知一般地,我们把函数logayx(a>0且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).提问:(1).在函数的定义中,为什么要限定a>0且a≠1.(2).为什么对数函数logayx(a>0且a≠1)的定义域是(0,+∞).组织学生充分讨论、交流,使学生更加理解对数函数的含义,从而加深对对数函数的理解.答:①根据对数与指数式的关系,知logayx可化为yax,由指数的概念,要使yax有意义,必须规定a>0且a≠1.②因为logayx可化为yxa,不管y取什么值,由指数函数的性质,ya>0,所以(0,)x.例题1:求下列函数的定义域(1)2logayx(2)log(4)ayx(a>0且a≠1)分析:由对数函数的定义知:2x>0;4x>0,解出不等式就可求出定义域.解:(1)因为2x>0,即x≠0,所以函数2logxay的定义域为|0xx.(2)因为4x>0,即x<4,所以函数(4)logxay的定义域为|xx<4.下面我们来研究函数的图象,并通过图象来研究函数的性质:先完成P81表2-3,并根据此表用描点法或用电脑画出函数2logxy的图象,再利用电脑软件画出0.5log.xy的图象x12124681216y-10122.5833.584y0.5logyx0x2logyx注意到:122loglogyxx,若点2(,)logxyyx在的图象上,则点12(,)logxyyx在的图象上.由于(,xy)与(,xy)关于x轴对称,因此,12logyx的图象与2logyx的图象关于x轴对称.所以,由此我们可以画出12logyx的图象.先由学生自己画出12logyx的图象,再由电脑软件画出2logyx与12logyx的图象.探究:选取底数(aa>0,且a≠1)的若干不同的值,在同一平面直角坐标系内作出相应的对数函数的图象.观察图象,你能发现它们有哪些特征吗?.作法:用多媒体再画出4logyx,3logyx,13logyx和14logyx3logyx42-2-4-55提问:通过函数的图象,你能说出底数与函数图象的关系吗?函数的图象有何特征,性质又如何?先由学生讨论、交流,教师引导总结出函数的性质.(投影)图象的特征函数的性质(1)图象都在y轴的右边(1)定义域是(0,+∞)(2)函数图象都经过(1,0)点(2)1的对数是0(3)从左往右看,当a>1时,图象逐渐上升,当0<a<1时,图象逐渐下降.(3)当a>1时,logxay是增函数,当0<a<1时,logayx是减函数.(4)当a>1时,函数图象在(1,0)点右边的纵坐标都大于0,在(1,0)点左边的纵坐标都小于0.当0<a<1时,图象正好相反,在(1,0)点右边的纵坐标都小于0,在(1,0)点左边的纵坐标都大于0.(4)当a>1时x>1,则logax>00<x<1,logax<0当0<a<1时x>1,则logax<00<x<1,logax<0由上述表格可知,对数函数的性质如下(先由学生仿造指数函数性质完成,教师适当启发、引导):a>10<a<1图象性质(1)定义域(0,+∞);(2)值域R;(3)过点(1,0),即当x=1,y=0;4logyx14logyx13logyx0(4)在(0,+∞)上是增函数在(0,+∞)是上减函数例题训练:1.比较下列各组数中的两个值大小(1)22log3.4,log8.5(2)0.30.3log1.8,log2.7(3)log5.1,log5.9aa(a>0,且a≠1)分析:由数形结合的方法或利用函数的单调性来完成:(1)解法1:用图形计算器或多媒体画出对数函数2logyx的图象.在图象上,横坐标为3、4的点在横坐标为8.5的点的下方:所以,22log3.4log8.5解法2:由函数2logyxR在+上是单调增函数,且3.4<8.5,所以22log3.4log8.5.解法3:直接用计算器计算得:2log3.41.8,2log8.53.1(2)第(2)小题类似(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,logayx在(0,+∞)上是增函数,且5.1<5.9.所以,log5.1alog5.9a当a1时,logayx在(0,+∞)上是减函数,且5.1<5.9.所以,log5.1alog5.9a解法2:转化为指数函数,再由指数函数的单调判断大小不一,令11log5.1,5.1,baba则令22log5.9,5.9,baba则则25.9ba则当a>1时,xya在R上是增函数,且5.1<5.9所以,1b<2b,即log5.1a<log5.9a当0<a<1时,xya在R上是减函数,且5.1>5.9所以,1b<2b,即log5.1a>log5.9a说明:先画图象,由数形结合方法解答课堂练习:P73练习第2,3题补充练习1.已知函数(2)xyf的定义域为[-1,1],则函数2(log)yfx的定义域为2.求函数22log(1)yxx的值域.3.已知log7m<log7n<0,按大小顺序排列m,n,0,14.已知0<a<1,b>1,ab>1.比较1log,log,logaabbb1的大小b归纳小结:②对数函数的概念必要性与重要性;②对数函数的性质,列表展现.
本文标题:人教A版数学必修一教案222对数函数及其性质第12课时
链接地址:https://www.777doc.com/doc-5877859 .html