您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第20讲特殊平行四边形
第20讲特殊的平行四边形一、知识清单梳理知识点一:特殊平行四边形的性质与判定关键点拨及对应举例1.性质(具有平行四边形的一切性质,对边平行且相等)矩形菱形正方形(1)矩形中,Rt△ABD≌Rt△DCA≌Rt△CDB≌Rt△BAC;_两对全等的等腰三角形.所以经常结合勾股定理、等腰三角形的性质解题.(2)菱形中,有两对全等的等腰三角形;Rt△ABO≌Rt△ADO≌Rt△CBO≌Rt△CDO;若∠ABC=60°,则△ABC和△ADC为等边三角形,且四个直角三角形中都有一个30°的锐角.(3)正方形中有8个等腰直角三角形,解题时结合等腰直角三角形的锐角为45°,斜边=直角边.(1)四个角都是直角(2)对角线相等且互相平分.即AO=CO=BO=DO.(3)面积=长×宽=2S△ABD=4S△AOB.(1)四边相等(2)对角线互相垂直、平分,一条对角线平分一组对角(3)面积=底×高=对角线_乘积的一半(1)四条边都相等,四个角都是直角(2)对角线相等且互相垂直平分(3)面积=边长×边长=2S△ABD=4S△AOB2.判定(1)定义法:有一个角是直角的平行四边形(2)有三个角是直角(3)对角线相等的平行四边形(1)定义法:有一组邻边相等的平行四边形(2)对角线互相垂直的平行四边形(3)四条边都相等的四边形(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形(2)一组邻边相等的矩形(3)一个角是直角的菱形(4)对角线相等且互相垂直、平分例:判断正误.邻边相等的四边形为菱形.()有三个角是直角的四边形式矩形.()对角线互相垂直平分的四边形是菱形.()对边相等的矩形是正方形.()3.联系包含关系:知识点二:特殊平行四边形的拓展归纳4.中点四边形(1)任意四边形多得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.如图,四边形ABCD为菱形,则其中点四边形EFGD的形状是矩形.5.特殊四边形中的解题模型(1)矩形:如图①,E为AD上任意一点,EF过矩形中心O,则△AOE≌△COF,S1=S2.(2)正方形:如图②,若EF⊥MN,则EF=MN;如图③,P为AD边上任意一点,则PE+PF=AO.(变式:如图④,四边形ABCD为矩形,则PE+PF的求法利用面积法,需连接PO.)图①图②图③图④
本文标题:第20讲特殊平行四边形
链接地址:https://www.777doc.com/doc-5880942 .html