您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 高中数学121排列教案新人教版选修23
§1.2.1排列教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列、排列数的概念奎屯王新敞新疆教学难点:排列数公式的推导奎屯王新敞新疆授课类型:新授课奎屯王新敞新疆课时安排:2课时奎屯王新敞新疆内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题.只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础奎屯王新敞新疆分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.教学过程:一、复习引入:1奎屯王新敞新疆分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有1m种不同的方法,在第二类办法中有2m种不同的方法,……,在第n类办法中有nm种不同的方法奎屯王新敞新疆那么完成这件事共有12nNmmm种不同的方法奎屯王新敞新疆2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有1m种不同的方法,做第二步有2m种不同的方法,……,做第n步有nm种不同的方法,那么完成这件事有12nNmmm种不同的方法奎屯王新敞新疆分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事奎屯王新敞新疆应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制奎屯王新敞新疆二、讲解新课:1、问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素奎屯王新敞新疆解决这一问题可分两个步骤:第1步,确定参加上午活动的同学,从3人中任选1人,有3种方法;第2步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的2人中去选,于是有2种方法.根据分步乘法计数原理,在3名同学中选出2名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有3×2=6种,如图1.2一1所示.图1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素a,b,。中任取2个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是ab,ac,ba,bc,ca,cb,共有3×2=6种.问题2.从1,2,3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?分析:解决这个问题分三个步骤:第一步先确定左边的数,在4个字母中任取1个,有4种方法;第二步确定中间的数,从余下的3个数中取,有3种方法;第三步确定右边的数,从余下的2个数中取,有2种方法奎屯王新敞新疆由分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列奎屯王新敞新疆由此可写出所有的排法奎屯王新敞新疆显然,从4个数字中,每次取出3个,按“百”“十”“个”位的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数.可以分三个步骤来解决这个问题:第1步,确定百位上的数字,在1,2,3,4这4个数字中任取1个,有4种方法;第2步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的3个数字中去取,有3种方法;第3步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的2个数字中去取,有2种方法.根据分步乘法计数原理,从1,2,3,4这4个不同的数字中,每次取出3个数字,按“百”“十”“个”位的顺序排成一列,共有4×3×2=24种不同的排法,因而共可得到24个不同的三位数,如图1.2一2所示.由此可写出所有的三位数:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432。同样,问题2可以归结为:从4个不同的元素a,b,c,d中任取3个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?所有不同排列是abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb.共有4×3×2=24种.树形图如下abcdbcdacdabdabc2.排列的概念:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n个不同元素中取出m个元素的一个排列....奎屯王新敞新疆说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同奎屯王新敞新疆3.排列数的定义:从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示奎屯王新敞新疆注意区别排列和排列数的不同:“一个排列”是指:从n个不同元素中,任取m个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n个不同元素中,任取m(mn)个元素的所有排列的个数,是一个数奎屯王新敞新疆所以符号mnA只表示排列数,而不表示具体的排列奎屯王新敞新疆4.排列数公式及其推导:由2nA的意义:假定有排好顺序的2个空位,从n个元素12,,naaa中任取2个元素去填空,一个空位填一个元素,每一种填法就得到一个排列,反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数2nA.由分步计数原理完成上述填空共有(1)nn种填法,∴2nA=(1)nn奎屯王新敞新疆由此,求3nA可以按依次填3个空位来考虑,∴3nA=(1)(2)nnn,求mnA以按依次填m个空位来考虑(1)(2)(1)mnAnnnnm,排列数公式:(1)(2)(1)mnAnnnnm(,,mnNmn)说明:(1)公式特征:第一个因数是n,后面每一个因数比它前面一个少1,最后一个因数是1nm,共有m个因数;(2)全排列:当nm时即n个不同元素全部取出的一个排列奎屯王新敞新疆全排列数:(1)(2)21!nnAnnnn(叫做n的阶乘)奎屯王新敞新疆另外,我们规定0!=1.例1.用计算器计算:(1)410A;(2)518A;(3)18131813AA.解:用计算器可得:由(2)(3)我们看到,51813181813AAA.那么,这个结果有没有一般性呢?即!()!nmnnnmnmAnAAnm.排列数的另一个计算公式:(1)(2)(1)mnAnnnnm(1)(2)(1)()321()(1)321nnnnmnmnmnm!()!nnm=nnnmnmAA.即mnA=!()!nnm奎屯王新敞新疆例2.解方程:3322126xxxAAA.解:由排列数公式得:3(1)(2)2(1)6(1)xxxxxxx,∵3x,∴3(1)(2)2(1)6(1)xxxx,即2317100xx,解得5x或23x,∵3x,且xN,∴原方程的解为5x.例3.解不等式:2996xxAA.解:原不等式即9!9!6(9)!(11)!xx,也就是16(9)!(11)(10)(9)!xxxx,化简得:2211040xx,解得8x或13x,又∵29x,且xN,所以,原不等式的解集为2,3,4,5,6,7.例4.求证:(1)nmnmnnnmAAA;(2)(2)!135(21)2!nnnn.证明:(1)!()!!()!mnmnnmnAAnmnnmnnA,∴原式成立奎屯王新敞新疆(2)(2)!2(21)(22)43212!2!nnnnnnnn2(1)21(21)(23)312!nnnnnnn!13(23)(21)!nnnn135(21)n右边∴原式成立奎屯王新敞新疆说明:(1)解含排列数的方程和不等式时要注意排列数mnA中,,mnN且mn这些限制条件,要注意含排列数的方程和不等式中未知数的取值范围;(2)公式(1)(2)(1)mnAnnnnm常用来求值,特别是,mn均为已知时,公式mnA=!()!nnm,常用来证明或化简奎屯王新敞新疆例5.化简:⑴12312!3!4!!nn;⑵11!22!33!!nn奎屯王新敞新疆⑴解:原式11111111!2!2!3!3!4!(1)!!nn11!n⑵提示:由1!1!!!nnnnnn,得!1!!nnnn,原式1!1n奎屯王新敞新疆说明:111!(1)!!nnnn.例6.(课本例2).某年全国足球甲级(A组)联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?解:任意两队间进行1次主场比赛与1次客场比赛,对应于从14个元素中任取2个元素的一个排列.因此,比赛的总场次是214A=14×13=182.例7.(课本例3).(1)从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取3个元素的一个排列,因此不同送法的种数是35A=5×4×3=60.(2)由于有5种不同的书,送给每个同学的1本书都有5种不同的选购方法,因此送给3名同学每人各1本书的不同方法种数是5×5×5=125.例8中两个问题的区别在于:(1)是从5本不同的书中选出3本分送3名同学,各人得到的书不同,属于求排列数问题;而(2)中,由于不同的人得到的书可能相同,因此不符合使用排列数公式的条件,只能用分步乘法计数原理进行计算.例8.(课
本文标题:高中数学121排列教案新人教版选修23
链接地址:https://www.777doc.com/doc-5887288 .html