您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 其它办公文档 > 高二人教A版必修5系列教案33二元一次不等式组与简单的线性规划问题2
课题:§3.3.1二元一次不等式(组)与平面区域第1课时授课类型:新授课【教学目标】1.知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;2.过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;3.情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。【教学重点】用二元一次不等式(组)表示平面区域;【教学难点】【教学过程】1.课题导入1.从实际问题中抽象出二元一次不等式(组)的数学模型课本第91页的“银行信贷资金分配问题”教师引导学生思考、探究,让学生经历建立线性规划模型的过程。在获得探究体验的基础上,通过交流形成共识:2.讲授新课1.建立二元一次不等式模型把实际问题转化数学问题:设用于企业贷款的资金为x元,用于个人贷款的资金为y元。(把文字语言转化符号语言)(资金总数为25000000元)25000000xy(1)(预计企业贷款创收12%,个人贷款创收10%,共创收30000元以上)(12%)x+(10%)y30000即12103000000xy(2)(用于企业和个人贷款的资金数额都不能是负值)0,0xy(3)将(1)(2)(3)合在一起,得到分配资金应满足的条件:25000000121030000000,0xyxyxy2.二元一次不等式和二元一次不等式组的定义(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式。(2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组。(3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x和y的取值构成有序实数对(x,y),所有这样的有序实数对(x,y)构成的集合称为二元一次不等式(组)的解集。(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合。3.探究二元一次不等式(组)的解集表示的图形(1)回忆、思考回忆:初中一元一次不等式(组)的解集所表示的图形——数轴上的区间思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形?(2)探究从特殊到一般:先研究具体的二元一次不等式x-y6的解集所表示的图形。如图:在平面直角坐标系内,x-y=6表示一条直线。平面内所有的点被直线分成三类:第一类:在直线x-y=6上的点;第二类:在直线x-y=6左上方的区域内的点;第三类:在直线x-y=6右下方的区域内的点。设点是直线x-y=6上的点,选取点,使它的坐标满足不等式x-y6,请同学们完成课本第93页的表格,横坐标x-3-2-10123点P的纵坐标1y点A的纵坐标2y并思考:当点A与点P有相同的横坐标时,它们的纵坐标有什么关系?根据此说说,直线x-y=6左上方的坐标与不等式x-y6有什么关系?直线x-y=6右下方点的坐标呢?学生思考、讨论、交流,达成共识:在平面直角坐标系中,以二元一次不等式x-y6的解为坐标的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y6。因此,在平面直角坐标系中,不等式x-y6表示直线x-y=6左上方的平面区域;如图。类似的:二元一次不等式x-y6表示直线x-y=6右下方的区域;如图。直线叫做这两个区域的边界由特殊例子推广到一般情况:(3)结论:二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)4.二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(yx,),把它的坐标(yx,)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.(特殊地,当C≠0时,常把原点作为此特殊点)【应用举例】例1画出不等式44xy表示的平面区域。解:先画直线44xy(画成虚线).取原点(0,0),代入x+4y-4,∵0+4×0-4=-4<0,∴原点在44xy表示的平面区域内,不等式44xy表示的区域如图:归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法。特殊地,当0C时,常把原点作为此特殊点。变式1、画出不等式1234yx所表示的平面区域。变式2、画出不等式1x所表示的平面区域。例2用平面区域表示.不等式组3122yxxy的解集。分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。解:不等式312yx表示直线312yx右下方的区域,2xy表示直线2xy右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集。归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。变式1、画出不等式04)(12()yxyx表示的平面区域。变式2、由直线02yx,012yx和012yx围成的三角形区域(包括边界)用不等式可表示为。3.随堂练习1、课本第97页的练习1、2、34.课时小结1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法.3.二元一次不等式组表示的平面区域.5.评价设计课本第105页习题3.3[A]组的第1题【板书设计】【授后记】第周第课时授课时间:20年月日(星期)课题:§3.3.1二元一次不等式(组)与平面区域第2课时授课类型:新授课【教学目标】1.知识与技能:巩固二元一次不等式和二元一次不等式组所表示的平面区域;能根据实际问题中的已知条件,找出约束条件;2.过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;3.情态与价值:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新。【教学重点】理解二元一次不等式表示平面区域并能把不等式(组)所表示的平面区域画出来;【教学难点】把实际问题抽象化,用二元一次不等式(组)表示平面区域。【教学过程】1.课题导入[复习引入]二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)判断方法:由于对在直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.(特殊地,当C≠0时,常把原点作为此特殊点)。随堂练习11、画出不等式2x+y-6<0表示的平面区域.2、画出不等式组3005xyxyx表示的平面区域。2.讲授新课【应用举例】例3某人准备投资1200万兴办一所完全中学,对教育市场进行调查后,他得到了下面的数据表格(以班级为单位):学段班级学生人数配备教师数硬件建设/万元教师年薪/万元初中45226/班2/人高中40354/班2/人分别用数学关系式和图形表示上述的限制条件。解:设开设初中班x个,开设高中班y个,根据题意,总共招生班数应限制在20-30之间,B(-52,52)C(3,-3)A(3,8)x=3x+y=0x-y+5=0063xy所以有2030xy考虑到所投资金的限制,得到265422231200xyxy即240xy另外,开设的班数不能为负,则0,0xy把上面的四个不等式合在一起,得到:203024000xyxyxy用图形表示这个限制条件,得到如图的平面区域(阴影部分)例4一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t、硝酸盐66t,在此基础上生产两种混合肥料。列出满足生产条件的数学关系式,并画出相应的平面区域。解:设x,y分别为计划生产甲乙两种混合肥料的车皮数,于是满足以下条件:41018156600xyxyxy在直角坐标系中可表示成如图的平面区域(阴影部分)。[补充例题]例1、画出下列不等式表示的区域(1)0)1)((yxyx;(2)xyx2分析:(1)转化为等价的不等式组;(2)注意到不等式的传递性,由xx2,得0x,又用y代y,不等式仍成立,区域关于x轴对称。解:(1)10010yxyxyx或10yxyx矛盾无解,故点),(yx在一带形区域内(含边界)。(2)由xx2,得0x;当0y时,有020yxyx点),(yx在一条形区域内(边界);当0y,由对称性得出。指出:把非规范形式等价转化为规范不等式组形式便于求解例2、利用区域求不等式组015530632032yxyxyx的整数解分析:不等式组的实数解集为三条直线032:1yxl,0632:2yxl,01553:3yxl所围成的三角形区域内部(不含边界)。设All21,Bll31,Cll32,求得区域内点横坐标范围,取出x的所有整数值,再代回原不等式组转化为y的一元不等式组得出相应的y的整数值。解:设032:1yxl,0632:2yxl,01553:3yxl,All21,Bll31,Cll32,∴)43,815(A,)3,0(B,)1912,1975(C。于是看出区域内点的横坐标在)1975,0(内,取x=1,2,3,当x=1时,代入原不等式组有512341yyy⇒1512y,得y=-2,∴区域内有整点(1,-2)。同理可求得另外三个整点(2,0),(2,-1),(3,-1)。指出:求不等式的整数解即求区域内的整点是教学中的难点,它为线性规划中求最优整数解作铺垫。常有两种处理方法,一种是通过打出网络求整点;另一种是本题解答中所采用的,先确定区域内点的横坐标的范围,确定x的所有整数值,再代回原不等式组,得出y的一元一次不等式组,再确定y的所有整数值,即先固定x,再用x制约y。3.随堂练习21.(1)1xy;(2).yx;(3).yx2.画出不等式组53006xyyxyx表示的平面区域3.课本第97页的练习44.课时小结进一步熟悉用不等式(组)的解集表示的平面区域。5.评价设计1、课本第105页习题3.3[B]组的第1、2题【板书设计】【授后记】第周第课时授课时间:20年月日(星期)课题:§3.3.2简单的线性规划第3课时授课类型:新授课【教学目标】1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。【教学重点】用图解法解决简单的线性规划问题【教学难点】准确求得线性规划问题的最优解【教学过程】1.课题导入[复习提问]1、二元一次不等式0CByAx在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵。2.讲授新课在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。1、下面我们就来看有关与生产安排的一个问题:
本文标题:高二人教A版必修5系列教案33二元一次不等式组与简单的线性规划问题2
链接地址:https://www.777doc.com/doc-5887791 .html