您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高二数学教案第一章常用逻辑用语136简单的逻辑联结词非人教A版选修21
课题:简单的逻辑联结词:非课时:006课型:新授课教学目标1.知识与技能目标:(1)掌握逻辑联结词“非”的含义(2)正确应用逻辑联结词“非”解决问题(3)掌握真值表并会应用真值表解决问题2.过程与方法目标:观察和思考中,在解题和证明题中,本节课要特别注重学生思维能力中严密性品质的培养.3.情感态度价值目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.教学重点与难点重点:通过数学实例,了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容.难点:1、正确理解命题“¬P”真假的规定和判定.2、简洁、准确地表述命题“¬P”.教学过程1、引入新课:思考、分析问题1:下列各组命题中的两个命题间有什么关系?(1)①35能被5整除;②35不能被5整除;(2)①方程x2+x+1=0有实数根。②方程x2+x+1=0无实数根。学生很容易看到,在每组命题中,命题②是命题①的否定。2、“非”定义一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p读作“非p”或“p的否定”。3、命题“¬p”与命题p的真假间的关系命题“¬p”与命题p的真假之间有什么联系?引导学生分析前面所举例子中命题p与命题¬p的真假性,概括出这两个命题的真假之间的关系的一般规律。例如:在上面的例子中,第(1)组命题中,命题①是真命题,而命题②是假命题。第(2)组命题中,命题①是假命题,而命题②是真命题。由此可以看出,既然命题¬P是命题P的否定,那么¬P与P不能同时为真命题,也不能同时为假命题,也就是说,若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题;4、命题的否定与否命题的区别让学生思考:命题的否定与原命题的否命题有什么区别?命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定,因此在解题时应分请命题的条件和结论。例:如果命题p:5是15的约数,那么命题¬p:5不是15的约数;p的否命题:若一个数不是5,则这个数不是15的约数。显然,命题p为真命题,而命题p的否定¬p与否命题均为假命题。5.例题分析例1写出下表中各给定语的否定语。若给定语为等于大于是都是至多有一个至少有一个其否定语分别为分析:“等于”的否定语是“不等于”;“大于”的否定语是“小于或者等于”;“是”的否定语是“不是”;“都是”的否定语是“不都是”;“至多有一个”的否定语是“至少有两个”;“至少有一个”的否定语是“一个都没有”;例2:写出下列命题的否定,判断下列命题的真假p¬P真假假真(1)p:y=sinx是周期函数;(2)p:3<2;(3)p:空集是集合A的子集。解略.6.巩固练习:P18习题1.3第3题7.教学反思:(1)正确理解命题“¬P”真假的规定和判定.(2)简洁、准确地表述命题“¬P”.8.作业P18:习题1.3A组B题
本文标题:高二数学教案第一章常用逻辑用语136简单的逻辑联结词非人教A版选修21
链接地址:https://www.777doc.com/doc-5887866 .html