您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 函数单调性的应用毕业论文
学号:函数单调性的应用系别专业班级姓名指导教师2013年5月8日安阳师范学院人文管理学院本科毕业论文(设计)安阳师范学院人文管理学院本科毕业论文(设计)摘要函数单调性是函数的重要性质之一,同时也是解决实际问题求最值的重要方法。本课题从函数单调性的概念与定义入手,主要介绍函数单调性的若干性质和判别方法,然后深入探讨和总结单调性在数学领域的相关应用,继而联系实际,分析单调性在解决实际问题中的重要作用,从而总结出函数单调性所适用的条件,应用的范围等。所以,无论是从研究教学来讲,还是实际应用来讲,研究函数的单调性都具有重要理论意义和现实意义。关键词:函数单调性,判别,导数,应用AbstractMonotonicfunctionnotonlyisoneoftheimportantnaturesofthefunction,butalsoisanimportantmethodforthepracticalproblems.Thisprojectplantostartwiththeconceptanddefinitionofthefunctionmonotonicity,mainlyintroducessomepropertiesofmonotonefunctionsanddiscriminantmethods,andthenfurtherdiscussedandsummarizedmonotonicrelatedapplicationsinthefieldofmathematics,andthencontactwithpractice,analysiswhat’stheimportantroleofmonotonicinsolvingpracticalproblems,thussummedtheconditionsapplied,theapplicationscopeandsoon.So,whetheritisfromresearchandteaching,orfromitspracticalapplication,monotonicityalsohasimportanttheoreticalandpracticalsignificance.Keywords:Monotonicfunction,Distinguish,Derivative,Application安阳师范学院人文管理学院本科毕业论文(设计)目录1、前言··································································································12、函数单调性的基础理论···········································································12.1函数单调性的基本概念······································································12.2函数单调性的常用定理与性质·····························································33、函数单调性的判别·················································································73.1初等数学中函数单调性的判别·····························································73.2高等数学中利用导数判别函数单调性····················································84、函数单调性的解题应用···········································································84.1单调性在求极值、最值中的应用··························································84.2单调性在不等式中的应用··································································144.3单调性在求方程解问题中的应用·························································154.4单调性在化简求值方面的应用····························································164.5单调性在比较大小方面的应用····························································175、函数单调性在实际生活中的应用······························································175.1单调性在材料合理利用中的应用·························································175.2单调性在生产利润中的应用·······························································185.3单调性在结构工程中的应用·······························································205.4单调性在优化路径中的应用········································································216、结论·······························································································22致谢·······································································································23参考文献·································································································24安阳师范学院人文管理学院本科毕业论文(设计)11、前言单调性是近代数学的重要基础,是联系初等数学与高等数学的重要纽带。研究函数在无限变化中的变化趋势,从有限认识无限,从近似中认识精确,从量变中认识质变,都要用到单调性。它的引入为解决相关数学问题提供了新的视野,为研究函数的性质、证明不等式、求解方程、比较大小等方面提供了有力的工具。本文将在已有文献的基础之上,总结单调性在解决数学问题中的相关应用,并且探讨单调性在利润最大化、材料优化、资源整合和路径选择等方面的应用。2、函数单调性的基础理论2.1函数单调性的基本概念2.1.1函数单调性的定义一般地,设函数()fx的定义域为I:如果对属于I内某个区间上的任意两个自变量12,xx,当12xx时,都有12fxfx,那么就说()fx在这个区间上是增函数。如果对属于I内某个区间上的任意两个自变量12,xx,当12xx时,都有12fxfx,那么就说()fx在这个区间上是减函数。若函数在这一区间具有(严格的)单调性,则就说函数()yfx在某个区间是增函数或减函数,这一区间叫做函数的单调区间,此时也说函数是这一区间上的单调函数。2.1.2函数单调性的意义在单调区间上,增函数的图像是上升的,减函数的图像是下降的。函数的这一性质在解决函数求极值、比较大小、求解方程的根、解不等式等问题时都有很大的帮助,在现实生活中,例如在经济领域中如何实现利润最大化,在工程领域中如何计算材料的极限强度,在航空领域中计算航空器回收落地时间等等,函数单调性都有很重要的应用。2.1.3函数单调性的理解(1)图形理解在区间D上,()fx的图像上升(或下降)()fx是区间D上的增函数(或减函数)。安阳师范学院人文管理学院本科毕业论文(设计)2例1证明函数]1,01)(在区间(xxxf上是减函数。证明:设12,xx是区间]1,0(上的任意实数,且12xx,则121212121221121212121111()()()()()1()()(1)fxfxxxxxxxxxxxxxxxxxxx12121212121212121010,01,10,01,1()(1)0,()()0.xxxxxxxxxxxxfxfxxx又即1212()()1(0),xxfxfxfx因为当时,有,在区间上所以单调递减。图像如下:(2)正向理解(定义理解))(xf在区间D上单调递增,Dxx21,,且)()(2121xfxfxx;)(xf在区间D上单1x2f(x2)()(x2)))(1xf图1.1.1OxX1X2y②减函数图像OxX1X2y①增函数图像001x1安阳师范学院人文管理学院本科毕业论文(设计)3调递减,Dxx21,,且)()(2121xfxfxx。例2设函数)(xfy在2,0上是增函数,函数)2(xfy是偶函数,确定)27(),25(),1(fff的大小关系。解:函数)2(xfy是偶函数,)2()2(xfxf,)23()25()21()27(ffff,,又因为)(xf在)(2,0上是增函数,且2312113()(1)(),22fff即75()(1)()22fff(3)逆向理解)(xf在区间D上单调递增,Dxx21,,且2121)()(xxxfxf;)(xf在区间D上单调递减,Dxx21,,且2121)()(xxxfxf。例3已知奇函数)(xf是定义在11,上的减函数,若0)1()1(2afaf,求实数a的取值范围。解:由已知可知,)1()1(2afaf,又)(xf是奇函数2(1)(1)fafa。)(xf是定义在11,上的减函数,11112aa,解得10a。(4)导数理解设函数)(xf在区间D内可导,若'()0fx,则)(xf是减函数;若'()0fx,则)(xf是增函数。反之,若函数)(xf是增函数,则'()0fx;若函数)(xf是减函数,则'()0fx。例4函数xaxxf3)(在,是减函数,求a的取值范围。解:)(xf在R上递减,'2()310fxax恒成立,则(1)当0a时,'()10fx,满足条件。(2)当0a时,只须满足0120aa且即可。综上所述得0a.2.2函数单调性的常用定理和性质2.2.1最值定理对于在区间I上有定义的函数)(xf,如果有Ix0,使得对于0xI,都有安阳师范学院人文管理学院本科毕业论文(设计)4)()(0xfxf(或)()(0xfxf),则称)(0xf是函数)(xf在区间I上的最大值(或最小值)。例1求函数xxfsin1)(在区间2,0上的最大值和最小值。解:由三角函数xsin的性质可知,当2x时,函数xsin取得最大值12sin;当23x时,函数xsin取得最小值12sin.故函数)(xf的最大值为2,最小值为0。定理1(最大、最小值定理)若函数)(xf在闭区间ba,上连续,则)(xf在ba,上有最大值与最小值。如果函数)(xf在闭区
本文标题:函数单调性的应用毕业论文
链接地址:https://www.777doc.com/doc-5907207 .html