您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 泛函分析-孙炯版答案-第三章
1nÙSÈmHilbertmSK31.ÞÑü5DmX,¦3XþêØUdSÈ)¤.2.fxngSÈmH¥:.kxnk!kxk, (xn;y)!(x;y)(y2H)(n!1),y²:xn!x(n!1).3.En´n5m,fe1;e2;;eng´EnÄ,(ij)(i;j=1;2;;n)´½Ý,éEn¥x=Pni=1xiei9y=Pni=1yiei,½Â(x;y)=nXi;j=1ijxiyj;(3.0.1)K(;)´EnþSÈ.,(;)´EnþSÈ,K73½Ý(ij)¦(3.0.1)¤á.4.H´SÈm,x1;x2;;xn´H¥,§÷v^(x;x)=8:0;6=;1;=:y²fx1;x2;;xng´5Ã'.5.x;y´ESÈmX¥ü,K(1)kx+yk=kxk+kyk =y´xê;(2)kx yk=jkxk kykj =y´xê;(3)½z2X;kx yk=kx zk+kz yk =32[0;1],¦z=x+(1 )y:6.ei2X;keik=1(i2N);a2=Pi6=j(ei;ej)21;x=fig2l2;K(1 a)kxk22kXieik2(1+a)kxk22:7.XSÈm,x;y2X,b½kx+(1 )yk=kxk;8(0661).y²x=y.eX´DmØ´SÈm,¹qXÛ?8.H´Hilbertm,fxngH,÷vP1n=1kxnk1:y²P1n=1xn3H¥Âñ.9.fHng(n=1;2;)SÈm.-H=ffxngjxn2Hn;1Xn=1kxnk21g:121nÙSÈmHilbertméufxng;fyng2H:½Âfxng+fyng=fxn+yng(;2K);(fxng;fyng)=1Xn=1(xn;yn):y²H´SÈm,¿ zHnÑ´Hilbertm,H´Hilbertm.10.éuSÈmH,eã^dµ(1)x?y;(2)kx+ykkxk;82C;(3)kx+yk=kx yk;82C.11.eSÈmX´¢,Kkx+yk2=kxk2+kyk2%¹Xx?y,eX´Em,x?y7¤á.Þ~`².12.M=fxjx=fxng2l2;x2n=0;n=1;2;g;y²M´l24fm, ¦ÑM?.13.X=Rk,A=fag,Ù¥a=(a1;;ak),y²A?=f(x1;;xk)2RkkXj=1ajxj=0g:14.X´SÈm,AX.y²A?=A?.15.XÚY´HilbertmH5fm,-X+Y=fx+yjx2X;y2Yg.y²(X+Y)?=X?\Y?.16.3L2[a;b]¥,-S=fe2inxg1n= 1:(1)ejb aj1.¦yS?=f0g;(2)eb a1.¦yS?6=f0g:17.M;N´SÈmHfm,M?N,L=MN,y²L´4fm¿©7^´M;Nþ4fm(¿©5Ü©b½H).18.3C[ 1;1]=X¥.-(1)M1=ff2Xjf(x)=0;8x0g;(2)M2=ff2Xjf(0)=0g:OM1;M23X¥'uSÈ(f;g)=R1 1f(x)g(x)dxÖ.19.eH´SÈm,M;NH,K(1)eM?N,KMN?;NM?;(2)M?=(M)?.20.(X;kk)´Dm.(1)y²Dm(X;kk)´îà, =,é?¿x;y2X;x6=0;y6=0,3kx+yk=kxk+kyk7kx=y(0).(2)y²3îàDm¥,éuzx2X,x'u?¿4fmYZ%C´.21.D5mX¡´à,eX¥?Û÷vkxnk=kynk=1;kxn+ynk!2Sfxng;fyngkkxn ynk!0.(1)y²?ÛSÈmÑ´à.(2)C[a;b]Ø´à.(3)L1[a;b]Ø´à.22.fx1;x2;x3g´SÈmX¥5Ã'8,b½fx1;x2g÷v(xi;xj)=ij;16i;j62:½Âf:C2!RXe:f(1;2)=k1x1+2x2 x3k:y²i=(x3;xi);i=1;2,f.23.feg(2I)´SÈmH¥IOX.y²éuzx2H;x'uùIOXFourierXêf(x;e)j2Ig¥õkêØ.24.M´H45fm,fengfe0ng©O´MM?IOÄ,y²feng[fe0ng¤HIOÄ.25.HHilbertm,eEH´5fm¿ éu?¿x2H,x3EþÝK3,KE´4.26.A=fekg´SÈmX¥IOX.y²é8x;y2X,k1Xk=1(x;ek)(y;ek)kxkkyk:27.HHilbertm,fekg;fe0kg´H¥üIOX,¿ 1Pk=1kek e0kk21.y²XJfekg;fe0kg¥´,K,´.28.Þ~`²SÈm¥IOXؽ´.29.¡Hn(t)=( 1)net2dndtne t2Hermiteõª,-en(t)=(2nn!p) 1=2e t22Hn(t);(n=1;2;3;);y²feng|¤L2( 1;+1)¥IOX.30.-Ln(t).X(Laguerre)¼êetdndtn(tne t),y²f1n!e t=2Ln(t)g(n=1;2;)|¤L2(0;1)¥IOX.31.y²3©SÈm¥,?IOXõê8.41nÙSÈmHilbertm1nÙSK{1.)(1)lp(p6=2)þêØUdSÈ)¤.¯¢þ,x=(1;0;);y=(0;1;0;);w,kxk=kyk=1:qdx+y=(1;1;0;);x y=(1; 1;0;);kx+yk=kx yk=21p:p6=2,kkx+yk2+kx yk2=221p6=2(kxk2+kyk2)=4;¤±Ø÷v²1o1{K,Klp(p6=2)þêØUdSÈ)¤.(2)C[a;b]þêØUdSÈ)¤.¯¢þ,x(t)=1;y(t)=t ab a;Kkxk=kyk=1;x(t)+y(t)=1+t ab a;x(t) y(t)=1 t ab a;kx+yk=2;kx yk=1;¤±kx+yk2+kx yk2=56=2(kxk2+kyk2)=4;C[a;b]þêØUdSÈ)¤.2.y²Ïkxn xk2=(xn x;xn x)=kxnk2 (xn;x) (x;xn)+kxk2;(3.0.2)®limn!1kxnk!kxk,d^,limn!1(xn;x)!(x;x);limn!1(x;xn)!(x;x);é(3.0.2)ªÒü4,·klimn!1kxn xk2=kxk2 (x;x) (x;x)+kxk2=0;=limn!1xn=x:53.y²Äky²(;)´EnþSÈ.(1)é8x2En,(x;x)=nPi;j=1ijxixj.du(ij)´½,(x;x)0, (x;x)=0íÑx=0.(2)(1x+2y;z)=nXi;j=1ij(1xi+2yi)zj=nXi;j=1ij1xizj+nXi;j=1ij2xizj=1(x;z)+2(y;z):(3)Ï(ij)é¡,ij=ji,(x;y)=nXi;j=1ijxiyj=nXi;j=1ijxiyj=(y;x):nþ,(x;y)´XþSÈ.,e(x;y)XþSÈ,-ij=(ei;ej),8x=nPi=1xiei,k0(x;x)=(nXi=1xiei;nXi=1xjej)=nXi;j=1ijxixj; x6=0,nPi;j=1ijxixj=(x;x)0,¤±(ij)´½.4.y²1x1+2x2++nxn=0;Kd(x;x)=8:0;6=;1;=:,éz(1n)k=(1x1+2x2++nxn;x)=0;¤±x1;x2;;xn75Ã'.5.y²(1)¿©5.30¦y=x;Kkx+yk=k(1+)xk=(1+)kxk=kxk+kyk:75.kx+yk=kxk+kyk;Kkx+yk2=(kxk+kyk)2=kxk2+kyk2+2kxkkyk:,¡kx+yk2=(x+y;x+y)=kxk2+kyk2+2Re(x;y);61nÙSÈmHilbertm¤±Re(x;y)=kxkkyk:lkky kykkxkxk2=2kyk2 2kykkxkRe(x;y)=0;y=kykkxkx;=y´xê.(2)¿©5.3¦y=x;Kkx yk=k(1 )xk=j1 jkxk=jkxk kykj:75.kx yk=jkxk kykj;Kkx yk2=(kxk kyk)2=kxk2+kyk2 2kxkkykqkx yk2=(x y;x y)=kxk2+kyk2 2Re(x;y):¤±Re(x;y)=kxkkyk:lkky kykkxkxk2=2kyk2 2kykkxkRe(x;y)=0;y=kykkxkx;=y´xê.(3)z6=x;y,d(1),kx yk=k(x z)+(z y)k=kx zk+kz yk =30,¦(z y)=(x z).-=1+2(0;1),Kz=x+(1 )y:z=x;½z=y,=0;½=1B.6.y²y´±eت:jkXieik2 kxk22j=jXij(ei;ej) Xjij2j=jXi6=jij(ei;ej)ja(Xi6=jjijj2)12a(Xjij2jjj2)12=akxk22:7.y²dué82[0;1]kkx+(1 )yk=kxk;©O0;12kxk=kyk; kx+yk=2kxk:ÏH´SÈm,d²1o/{Kkx yk2=2(kxk2+kyk2) kx+yk2=0:7x=y:eX´DmØ´SÈm,x=yؽ¤á.~X,3C[0;1]¥,-x(t)1;y(t)=t;Ké82[0;1]kkx+(1 )yk=max0t1j+(1 )tj=1=kxk:´kx yk=max0t1j1 tj=16=0;=x6=y:8.y²-P1n=1xn=M;sk=Pkn=1xn;dksk sk0k=kkXn=k0+1xnkkXn=k0+1kxnk(k0k);fskg´Ä,H,K3x2H;÷vx=limk!1sk=1Xn=1xn; kxk=limk!1kskklimk!1kXn=1kxnk=M:9.y²éfxng;fyng2H;kj1Xn=1(xn;yn)j1Xn=1kxnkkynk(1Xn=1kxnk2)12(1Xn=1kynk2)12;¤±(fxng;fyng)=P1n=1(xn;yn)´k¿Â,N´yUùSȽÂH´SÈm.yzHn´Hilbertm,·y²H´Hilbertm.fx(i)g´H¥Ä,Ù¥x(i)=fx(i)1;x(i)2;;x(i)n;gK80;3i0;¦i;ji0kx(i) x(j)k;=1Xn=1kx(i)n x(j)nk22;lézn;fx(i)ng´Hn¥Ä,limi!1x(i)n=x(0)
本文标题:泛函分析-孙炯版答案-第三章
链接地址:https://www.777doc.com/doc-5909497 .html