您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 泛函分析-孙炯版答案--第五章
1oÙk.5fSK41.supn1janj1,3l1þ½ÂfT:y=Tx;Ù¥x=fkg;y=fkg;k=kk(k=1;2;):y²T´l1þk.5f¿ kTk=supn1janj.2.G´DmXfm,x02X;y²x02G =éuXþ?÷vf(x)=0(x2G)k.5¼f7kf(x0)=0:3.X5Dm,f´Xþ5¼.y²(1)fëY¿^´fmN(f)=fxjf(x)=0g´X¥4fm;(2)f6=0,fØëY¿^´N(f)3X¥È.4.T´C[a;b]þk.5f,PTtn=fn(t);n=0;1;2;;y²Td¼êffn(t)g(½.5.X;Y;ZÑ´Banachm,eT12B(X;Z);T22B(Y;Z), é8x2X;f§T1x=T2yk)y=Tx;y²T2B(X;Y).6.X;YBanachm,T2B(X;Y),eT´÷Úü,y²3~êa;b;¦é8x2X;kakxkkTxkbkxk:7.MnL«nn¢Ým,éuA=(aij)2Mn,½Ân(A)=Pi;jjaijj.(1)y²kAxk16n(A)kxk1,ùpx2Rn,Rnäkêkxk1=nPi=1jxij;(2)A;B2M:y²n(AB)6n(A)n(B).8.()´½Â3[a;b]þ¼ê.-(Tx)(t)=(t)x(t)(x2C[a;b]);KT´dC[a;b]Ùgk.5f¿^´()3[a;b]þëY.9.éuz2L1[a;b];½Â5fT:Lp[a;b]!Lp[a;b];(Tx)(t)=(t)x(t);8x2Lp[a;b]:¦Tê.10.ÄfT:C1[ 1;1]!C[ 1;1]µ(Tx)(t)=dx(t)dt;8x2C1[ 1;1]:121oÙk.5fùpC1[ 1;1]´3[ 1;1]¥êëYN¼ê.(1)eC1[ 1;1]¥ê´kxk1=maxfmax 16t61jx(t)j;max 16t61jx0(t)jg:¯T´Äk.;(2)eC1[ 1;1]¥ê´kxk2=max 16t61jx(t)j;¯T´Äk..11.éf2L[a;b];½Â(Tf)(x)=Zxaf(t)dt:y²(1)eTL[a;b]!C[a;b]f,KkTk=1;(2)eTL[a;b]!L[a;b]f,KkTk=b a:12.3C[0;1]þ½Â5¼f(x)=Z120x(t)dt Z112x(t)dt:y²(1)f´ëY;(2)kfk=1;(3)Ø3x2C[0;1];kxk61;f(x)=1.13.x(t)2C[a;b];f(x)=x(a) x(b);y²f´C[a;b]þk.5¼,¿¦kfk:14.¦¼f(x)=R10ptx(t2)dt3±eü«/eêkfk:(1)x(t)2C[0;1];(2)x(t)2L2[0;1]:15.(t)2C[0;1];3C[0;1]þ½Â¼(f)=Z10(t)f(t)dt;8f2C[0;1];¦kk.16.é?Ûf2L[a;b],(Tf)(x)=Rxaf(t)dt.rTÀL[a;b]!C[a;b]f,Áy²kTk=1.17.éuz2C[a;b],½Â5fT:L1[a;b]!L1[a;b],(Tx)(t)=(t)x(t),y²kTk=kk,Ù¥kkL«3C[a;b]¥ê.18.áÝA=(ajk)÷vM=supj1Xk=1jajkj1:3éu8x=fx1;x2;g;y=fy1;y2;g2l1;½Â5fT:l1!l1;x!y;Ù¥yj=P1k=1ajkxk;j=1;2;,y²kTk=M:19.ÄC[0;1]þfSfTng,Ù¥(Tnx)(t)=x(t1+1n),KfTngrÂñu,k.5f,ØUêÂñuTf.20.Tn´Lp(R)(1p1)gf.(Tnf)(x)=8:f(x);jxjn;0;jxjn:Ù¥f2Lp(R):y²TnrÂñuðfI,ØÂñI:21.X;Y´D5m,Ln(n=1;2;)´lXYëY5f,b½L´lXYN,¿ é?¿n=1;2;,3Mn0¦kLx Lnxk6Mnkxk;8x2X., Mn!0(n!1).y²L´lXYëY5N(K8`²eSfLngÂñ,K§47´ëY!5).22.(121K)belimn!1kLnx Lxk=0;8x2X,Ò´`LnrÂñuL,KL´5.23.E!E1!E2Ñ´Banachm,Tn!T2B(E;E1);Sn;S2B(E1;E2),efTng!fSng©OrÂñuT!S,y²fSnTngrÂñuST.24.X;Y´5Dm,Tn2B(X;Y);A´¦supn1kTnxk1:xN,KoA=X,oA´X¥1j8.25.ÄSmc0=fxx=(x1;;xn;0;);8xi2R;n1g;Ù¥zx´õkõØ0êi¤Ã¡S,¿ kxk=supn1jxnj;8x2c0:éuc0þfSTm:c0!c0;Tm(x)=(0;;0;mxm;0;):(1)OkTmk;(2)y²éuzx2c0;supm1kTmxk1;(3)y²c0gØ´1j.26.X´ålm.F´Xþ¢ëY¼êx äk5µéuzx2X;3~êMx0,¦éuzF2F;jF(x)jMx:y²3m8U±9~êM0,¦éuzx2U9¤kF2F:kjF(x)jM:27.X´Banachm,X0´X4fm.½ÂN:X!X=X0:x![x];8x2X;Ù¥[x]L«¹xûa.y²´mN.28.X´l1¥kkõØS¤fm.½ÂT:X!X;x=(x1;;xn;)!y=(y1;;yn;);ª¥yk=1kxk;y²41oÙk.5f(1)T2B(X);¿OkTk;(2)T 1Ã..ù´ÄBanach_f½ngñ?29.ekk´C[a;b]þ,ê£êPkk1¤,¿ kxn xk!07kjxn(t) x(t)j!0;8t2[a;b];Kkkkk1d.30.H=L2[0;1];T=iddtD(T)=fu2Hju(0)=0;u3[0;1]þýéëYg:y²T´4f.31.X;Y´5Dm,D´X5fm,T:D!Y´5N.y²(1)eTëY,D´48,KT´4f;(2)eTëY ´4f,KY%¹D4.32.X;Y5Dm,T:X!Y5f,eT4f _fT 1:Y!X3,y²T 1´4f.33.X;Y5Dm.eT1:X!Y´4f T22B(X;Y),y²T1+T2´4f.51oÙSK{1.y²w,T´l1l15f.ÏkTxk=1Xn=1jnnjsupnjnj:kxk;¤±T´k.5f kTksupnjnj:,¡,en=(0;;0;1|{z}n ;0;)2l1;kenk=1;KkTkkTenk=jnj(n=1;2;3;);¤±kTksupnjnj:nþ,kTk=supn1janj.2.y²75.dux02G;3fxngG¦xn!x0(n!1):f´Xþ?÷vf(x)=0(x2G)k.5¼.KdfëY5f(x0)=f(limn!1xn)=limn!1f(xn)=0:¿©5.bx0=2G.½Â¼fXe:f(x0+x)=;2C;x2G:w,fX1=fx0+xj2C;x2Ggþ5¼.dux0=2G;d(x0;G)6=0;l6=0kkx0+xk=jjkx0+1jjxkjjd(x0;G):¤±kf(x0+x)k=jj1d(x0;G)kx0+xk;=f´k..´,f(x)=f(0x0+x)=0(8x2G);f(x0)=1:ùf(x0)=0gñ.x02G:3.y²(1)75w,.¿©5.N(f)4,·y²é80;90;¦kxk,kjf(x)j.Øf6=0;x06=0¦f(x0)=: 8ÜN(f)+x0=fx0+x:x2N(f)g:61oÙk.5fÏN(f)4,¤±N(f)+x04, 062N(f)+x0,l30;¦S(0;)\(N(f)+x0)=;;u´±y²x2S(0;),jf(x)j:¯¢þ,Ø,,=3x2S(0;),¦jf(x)j:-y=xf(x);Kkykkxk; f(y x0)= f(x0)=0;y2S(0;)\(N(f)+x0);gñ.(2)¿©5.^y{.f´ëY,KdN(f)È5,é8x2X3N(f)¥Sfxng,¦xn!x(n!1):u´limn!1f(xn)=f(x),=f(x)=0:ùKf6=0gñ.75.fØëY,Kd5fëY5½n,f73x=0?ØëY.l300:fxng2X,¦xn!0,jf(xn)j0:é8x2X,w,x f(x)f(xn)xn2N(f), n!1,x f(x)f(xn)xn!x,N(f)3X¥È.4.y²8x(t)2C[a;b],dWeierstrass½n3fPn(t)=nPi=1iti2P[a;b]g¦kPn xk!0:duT´k.,lëY.Tx(t)=T(limn!1Pn(t))=limn!1T(nXi=1iti)=1Xn=1nfn(t):dué8x(t)2C[a;b]dfng1n=1(½,¤±Td¼êffn(t)g(½.5.y²8x1;x22Xéuf§T1x1=T2y1;T1x2=T2y2k)y1=Tx1;y2=Tx2;T1(x1+x2)=T1x1+T1x2=T2y1+T2y2=T2(y1+y2):ÏdkT(x1+x2)=Tx1+Tx2;ÓnT(x1)=T(x1);82K:KT´5f.e¡y²T´k..¯¢þ,xn!x;Txn!y.duT1xn=T2(Txn) T1;T2ëY,¤±T1x=T2y,=y=Tx.KT´4,2d4ã½nT´k.,=T2B(X;Y):76.y²dK,X;Y´Banachm.T2B(X;Y) T´V,KdBanach_f½n,T 1´k..Ï1=kTT 1kkTkkT 1k;kT 1k0;kTk0:-a=1=kT 1k;b=kTk:KakxkkTxkbkxk:7.y²(1)éuA=(aij)2Mn;x=(xj)2Rn:Ax=(nXj=1a1jxj;nXj=1a2jxj;):kAxk1=nXi=1nXj=1aijxjnXi=1nXj=1jaijjjxjjnXi=1nXj=1jaijjnXj=1jxjj=n(A)kxk1:(2)A=(aij)2Mn;B=(bij)2MnK(AB)ij=nXk=1aikbkjn(AB)=Xi;jnXk=1aikbkjXi;jnXk=1jaikjnXk=1jbkjj=nXinXk=1jaikjonXjnXk=1jbkjjo=n(A)n(B)8.y²75.eT´dC[a;b]Ùg5f.x12C[a;b];K(Tx)(t)=(t)2C[a;b]:=()3[a;b]þëY.¿©5.e(t)2C[a;b];´T´5.dukTx
本文标题:泛函分析-孙炯版答案--第五章
链接地址:https://www.777doc.com/doc-5910537 .html