您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 述职报告 > 公务员考试数量关系练习题库
1【例题】甲每5天进城一次,乙每9天进城一次,丙每12天进城一次,某天三人在城里相遇,那么下次相遇至少要:A.60天B.180天C.540天D.1620天【例题】三位采购员定期去某商店,小王每隔9天去一次,大刘每隔11天去一次,老杨每隔7天去一次,三人星期二第一次在商店相会,下次相会是星期几?A.星期一B.星期二C.星期三D.星期四【例题】赛马场的跑马道600米长,现有甲、乙、丙三匹马,甲1分钟跑2圈,乙1分钟跑3圈,丙1分钟跑4圈。如果这三匹马并排在起跑线上,同时往一个方向跑,请问经过几分钟,这三匹马自出发后第一次并排在起跑线上?()A.1/2B.1C.6D.12【例题】国际象棋的皇后可以沿横线、竖线、斜线走,为了控制一个4x4的棋盘至少要放几个皇后?A.1B.2C.3D.4【例题】有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑的太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?()A.15B.20C.16D.18【解析】下次相遇要多少天,也即求5,9,12的最小公倍数,可用代入法,也可直接求。显然5,9,12的最小公倍数为5×3×3×4=180。所以,答案为B。【解析】此题乍看上去是求9,11,7的最小公倍数的问题,但这里有一个关键词,即“每隔”,“每隔9天”也即“每10天”,所以此题实际上是求10,12,8的最小公倍数。10,12,8的最小公倍数为5×2×2×3×2=120。120÷7=17余1,所以,下一次相会则是在星期三,选择C。【解析】此题是一道有迷惑性的题,“1分钟跑2圈”和“2分钟跑1圈”是不同概念,不要等同于去求最小公倍数的题。显然1分钟之后,无论甲、乙、丙跑几圈都回到了起跑线上。所以,答案为B。【解析】B。2×2棋盘,1个皇后放在任意一格均可控制2×2=4格;3×3棋盘,1个皇后放在中心格里即可控制3×3=9格;4×4棋盘,中心在交点上,1个皇后不能控制两条对角线,还需要1个皇后放在拐角处控制边上的格。所以至少要放2个皇后。所以应选择B。【解析】C。先看最后兄弟俩各挑几块:哥哥比弟弟多挑2块,这是一个和差问题,哥哥挑的块数:(26+2)÷2=14块,弟弟=26-14=12块;然后再还原:哥哥还给弟弟5块:哥哥=14-5=9块,弟弟=12+5=17块;弟弟把抢走的一半还给哥哥:哥哥=9+9=18块,弟弟=17-9=8块;哥哥把抢走的一半还给弟弟:弟弟原来是8+8=16块。所以应选择C。【例题】5,6,10,9,15,12,(),()A、20,16B、30,17C、20,15D、15,20【例题】1/5,1/10,1/17,1/26,()A、1/54B、1/37C、1/49D、1/53【例题】9,81,729,()A、6561B、5661C、7651D、2351【例题】78,61,46,33,()A、21B、22C、27D、25【例题】2,3,6,18,()A、20B、36C、72D、108【解析】是隔数数列,故选C。【解析】分母为等差数列,故选B。【解析】公比为9的等比数列,故选A。【解析】相邻两数之差为17、15、13、11,故选B。【解析】从第三数开始,后数是前两数的乘积。故选D。【例题】某企业去年的销售收入为1000万元,成本分生产成本500万元和广告费200万元两个部分。若年利润必须按P%纳税,年广告费超出年销售收入2%的部分也必须按P%纳税,其它不纳税,且已知该企业去年共纳税120万元,则税率P%为A.40%B.25%C.12%D.10%【例题】甲乙两名工人8小时共加736个零件,甲加工的速度比乙加工的速度快30%,问乙每小时加工多少个零件?A.30个B.35个C.40个D.45个【例题】已知甲的12%为13,乙的13%为14,丙的14%为15,丁的15%为16,则甲、乙、丙、丁4个数中最大的数是:A.甲B.乙C.丙D.丁【例题】某储户于1999年1月1日存人银行60000元,年利率为2.00%,存款到期日即2000年1月1日将存款全部取出,国家规定凡1999年11月1日后孳生的利息收入应缴纳利息税,税率为20%,则该储户实际提取本金合计为A.61200元B.61160元C.61000元D.60040元【解析】选用方程法。根据题意列式如下:(1000-500-200)×P%+(200-1000×2%)×P%=120即480×P%=120P%=25%所以,答案为B。【解析】选用方程法。设乙每小时加工X个零件,则甲每小时加工1.3X个零件,并可列方程如下:(1+1.3X)×8=736X=40所以,选择C。【解析】显然甲=13/12%;乙=14/13%;丙=15/14%;丁=16/15%,显然最大与最小就在甲、乙之间,所以比较甲和乙的大小即可,甲/乙=13/12%/16/15%>1,所以,甲>乙>丙>丁,选择A。【解析】如不考虑利息税,则1999年1月1日存款到期日即2000年1月1可得利息为60000×2%=1200,也即100元/月,但实际上从1999年11月1日后要收20%利息税,也即只有2个月的利息收入要交税,税额=200×20%=40元所以,提取总额为60000+1200-40=61160,正确答案为B。【例题】0,14,78,252,()。A.510B.554C.620D.678【例题】1/3,1/4,1/6,1/12,1/36,()。A.1/72B.1/144C.1/216D.1/432【例题】-1,3,4,0,5,3,10,()。A.6B.7C.9D.14【例题】8,14,22,36,()。A.54B.56C.58D.60【例题】1,6,15,28,()。A.36B.39C.42D.45【解析】C。14-1=0,24-2=14,34-3=78,44-4=252,54-5=620,故本题正确答案为C。【解析】1/3×1/4×2=1/6,1/4×1/6×2=1/12,1/6×1/12×2=1/36,1/12×1/36×2=1/216,故本题正确答案为C。【解析】A。该数列为数字分段组合数列,每两项为一组,其和构成等比数列。由此判断,空缺处应为16-10=6,所以答案选A项。【解析】C。前两项之和等于第三项,故空缺项=22+36=58,故本题正确答案为C。【解析】D。该数列的公式为an=2n2-n,故空缺处应为2×52-5=45,故本题正确答案为D。2例题】1998年,甲的年龄是乙的年龄的4倍。2002年,甲的年龄是乙的年龄的3倍。问甲、乙二人2000年的年龄分别是多少岁?A.34岁,12岁B.32岁,8岁C.36岁,12岁D.34岁,10岁【例题】养鱼塘里养了一批鱼,第一次捕上来200尾,做好标记后放回鱼塘,数日后再捕上100尾,发现有标记的鱼为5尾,问鱼塘里大约有多少尾鱼?A.200B.4000C.5000D.6000【例题】2001年,某公司所销售的计算机台数比上一年度上升了20%,而每台的价格比上一年度下降了20%。如果2001年该公司的计算机销售额为3000万元,那么2000年的计算机销售额大约是多少?A.2900万元B.3000万元C.3100万元D.3300万元【例题】生产出来的一批衬衫中大号和小号各占一半。其中25%是白色的,75%是蓝色的。如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?A.15B.25C.35D.40【例题】某企业发奖金是根据利润提成的,利润低于或等于10万元时可提成10%;低于或等于20万元时,高于10万元的部分按7.5%提成;高于20万元时,高于20万元的部分按5%提成。当利润为40万元时,应发放奖金多少万元?A.2B.2.75C.3D.4.5【解析】C。抓住年龄问题的关键即年龄差,1998年甲的年龄是乙的年龄的4倍,则甲乙的年龄差为3倍乙的年龄,2002年,甲的年龄是乙的年龄的3倍,此时甲乙的年龄差为2倍乙的年龄,根据年龄差不变可得3×1998年乙的年龄=2×2002年乙的年龄3×1998年乙的年龄=2×(1998年乙的年龄+4)1998年乙的年龄=4岁则2000年乙的年龄为10岁。【解析】方程法:可设鱼塘有X尾鱼,则可列方程,100/5=X/200,解得X=4000,选择B。【解析】方程法:可设2000年时,销售的计算机台数为X,每台的价格为Y,显然由题意可知,2001年的计算机的销售额=X(1+20%)Y(1-20%),也即3000万=0.96XY,显然XY≈3100。答案为C。【解析】这是一道涉及容斥关系的比例问题。根据已知大号白=10件,因为大号共50件,所以,大号蓝=40件;大号蓝=40件,因为蓝色共75件,所以,小号蓝=35件;此题可以用另一思路进行解析(多进行这样的思维训练,有助于提升解题能力)大号白=10件,因为白色共25件,所以,小号白=15件;小号白=15件,因为小号共50件,所以,小号蓝=35件;所以,答案为C。【解析】这是一个种需要读懂内容的题型。根据要求进行列式即可。奖金应为10×10%+(20-10)×7.5%+(40-20)×5%=2.75所以,答案为B。【例题】8,15,29,57,()A.112B.114C.113D.116【例题】2,3,6,18,108,()A.216B.1080C.2160D.1944【例题】1/5,2/9,3/13,4/17,()A.5/19B.6/21C.5/21D.6/19【例题】【例题】12,23,35,48,62,()A.77B.80C.85D.75【解析】C。15=2×8-1,29=2×15-1,57=2×29-1,所以后一项为2×57=113。【解析】D。从第三项开始,后一项为前两项的积。【解析】C。分子和分母都呈等差数列。【解析】A。原题各项可变为故正确答案应为A。【解析】A。【例题】李明家在山上,爷爷家在山下,李明从家出发一每分钟90米的速度走了10分钟到了爷爷家。回来时走了15分钟到家,则李是多少?()A.72米/分B.80米/分C.84米/分D90米/分【例题】某校有有100个学生参加数学竞赛,平均得63分,其中男生平均60分,女生平均70分,则男生比女生多多少人?A.30B.32C.40D.45【例题】学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?A.256人B.250人C.225人D.196人【例题】甲对乙说:当我的岁数是你现在岁数时,你才4岁。乙对甲说:当我的岁数到你现在的岁数时,你将有67岁,甲乙现在各有:A.45岁,26岁B.46岁,25岁C.47岁,24岁D.48岁,23岁【例题】爸爸、哥哥、妹妹现在的年龄和是64岁。当爸爸的年龄是哥哥的3倍时,妹妹是9岁;当哥哥的年龄是妹妹的2倍时,爸爸34岁。现在爸爸的年龄是多少岁?A.34B.39C.40D.42【解析】A。李明往返的总路程是90×10×2=1800(米),总时间为10+15=25均速度为1800÷25=72米/分。【解析】C。总得分为63×100=6300,假设女生也是平均60分,那么100个学生共的6000分,这样就比实得的总分少300分。这是女生平均每人比男生高10分,所以这少的300分是由于每个女生少算了10分造成的,可见女生有300÷10=30人,男生有100-30=70人,故男生比女生多70-30=40人。【解析】正确答案为A。方阵问题的核心是求最外层每边人数。根据四周人数和每边人数的关系可以知:每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。方阵最外层每边人数:60÷4+1=16(人)整个方阵共有学生人数:16×16=256(人)。【解析】B。甲、乙二人的年龄差为(67-4)÷3=21岁,故今年甲为67-21=46岁,乙的年龄为45-21=25岁。【解析】C。解法一:用代入法逐项代入验证。解法二,利用“年龄差”是不变的,列方程求解。设爸爸、哥哥和妹妹的现在年龄分别为:x、y和
本文标题:公务员考试数量关系练习题库
链接地址:https://www.777doc.com/doc-5911228 .html