您好,欢迎访问三七文档
一、功1、功的定义:2、功的两要素是:3、功的效应是:力的空间积累效应。4、功的计算方法一般有两种:⑴、按照定义求功。即:W=Fscosθ,在高中阶段,这种方法只适用于恒力做功。当()时,F做正功,当()时,F不做功,当()时F做负功。这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。⑵、用动能定理W=ΔEk或功能关系求功。当F为变力时,往往考虑用这种方法求功。这里求得的功是该过程中外力对物体做的总功(或者说是合外力做的功)。这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。2、关于一对作用力和反作用力做功的特点,有以下两个常用的结论:⑴、一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零。⑵、一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。练习题:一、选择题1.下述说法中正确的是()A.力越大,位移越大,做功就越多B.力的方向与运动方向相同时,功就等于这个力与位移大小的乘积C.力很大,位移很大,这个力的功可能为零D.有加速度的物体一定有力对其做功2.如图7-1所示,质量分别为m1和m2的两个物体,m1<m2,在大小相等的两个力F1和F2的作用下沿水平方向移动了相同的距离,若F1做的功为W1,F2做的功为W2,则A.W1>W2B.W1<W2C.W1=W2D.条件不足,无法确定F1m1F2θm2图7-1θ3.关于摩擦力做功,下列说法中正确的是()A.静摩擦力一定不做功B.滑动摩擦力一定做负功C.静摩擦力和滑动摩擦力都可能做正功D.静摩擦力和滑动摩擦力都可能做负功4.如图7-2,质量为m的小物体相对静止在楔形物体的倾角为θ的光滑斜面上,楔形物体在水平推力F作用下向左移动了距离s,在此过程中,楔形物体对小物体做的功等于()A.0B.mgscosθC.FsD.MgstgθF图7-2θ二、功率:功率是描述做功快慢的物理量。⑴按定义:,所求出的功率是时间t内的平均功率。⑵常用计算式:P=Fvcosθ,其中θ是力与速度间的夹角。该公式有两种用法:①求某一时刻的即时功率。这时F是该时刻的作用力大小,v取即时值,对应的P为F在该时刻的即时功率;②当v为某段位移(时间)内的平均速度时,要求在这段位移(时间)内F为恒力,对应的P为F在该段时间内的平均功率。⑶重力的功率可表示为PG=mgvy,即重力的即时功率等于重力和物体在该时刻的竖直分速度之积。5.一个质量m=2.0kg的物体自由下落,重力加速度取10m/s2,则第2s内重力的平均功率是()A.400WB.300WC.200WD.100W6.快艇在水上行驶,所受水的阻力和艇的速度平方成正比,若快艇以速度v行驶时,发动机的功率为P,当快艇的速度为3v时,发动机的功率应为()A.3PB.9PC.27PD.81P三、功能关系:做功的过程是能量转化的过程,功是能的转化的量度。能量守恒和转化定律是自然界最基本的定律之一。而在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。本章是主要定理、定律都是由这个基本原理出发而得到的。需要明确的是:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它和一个时刻相对应。两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。四、动能定理1、动能定理的表述是:合外力做的功等于物体动能的变化。(这里的合外力指物体受到的所有外力的合力,包括重力)。也可以表述为:外力对物体做的总功等于物体动能的变化。实际应用时,后一种表述比较好操作。不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都加起来,就可以得到总功。动能定理是功能关系的具体应用之一:物体动能的变化由外力做的总功来量度。2、应用动能定理解题的步骤是:⑴确定研究对象和研究过程。和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间也不能有相对运动。(系统内力的总冲量一定是零,而系统内力做的总功不一定是零)。⑵对研究对象进行受力分析。(研究对象以外的物体施于研究对象的力都要分析,包括重力)。⑶写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。⑷写出物体的初、末动能。⑸按照动能定理列式求解。7.如图7-3所示,一个质量为m的小球用长为l的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置P缓慢地移到Q点,则水平力F所做的功为()A.B.C.D.8.质量为m的跳水运动员,从离水面高为h处以速度v1跳起,最后以速度v2进入水中,若不计空气阻力,则运动员起跳时所做的功等于()A.B.C.D.OmPQFθ图7-39.质量为m的物体从高为h的斜面顶端Q点由静止开始滑下,最后停在水平面上的B点,如图7-6所示.如果在B点给该物体一个初速度v0,使物体能沿着斜面上滑并停止在Q点,则v0应为多大?BAQh图7-6由动能定理有:所以有:五、机械能守恒定律1、两种表述方法:⑴、在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。⑵、如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。对机械能守恒定律的理解:①机械能守恒定律的研究对象一定是系统,至少包括地球在内。通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。另外小球的动能中所用的v,也是相对于地面的速度。②当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。③从功能关系的角度出发,可以证明:重力以外的其他力做功等于系统机械能的增加。那么“只有重力做功”,就是说重力以外的其他力做功为零,机械能的增量为零,既机械能守恒。④“只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。2、各种不同的表达式⑴,即;⑵;;。用⑴时,需要规定重力势能的参考平面。用⑵时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。尤其是用ΔE增=ΔE减,只要把增加的机械能和减少的机械能都写出来,方程自然就列出来了。3、解题步骤:⑴确定研究对象和研究过程。⑵判断机械能是否守恒。⑶选定一种表达式,列式求解。10.下列情况中,运动物体机械能一定守恒的是()A.物体的受合外力为零B.物体不受摩擦力C.物体受到重力和弹力D.物体只受重力11.如图7-4所示,在水平桌面上的A点有一个质量为m的物体以初速度v0被抛出,不计空气阻力,当它到达B点时,其动能为()A.B.C.D.ABHh图7-4本章除了介绍功、功率、动能、势能和机械能等概念以外,最重要的是研究了功和能的关系,尤其是功和机械能的关系。突出:功是能量转化的量度。⑴物体动能的增量由外力做的总功来量度:W外=ΔEk,这就是动能定理。⑵物体重力势能的增量由重力做的功来量度:WG=-ΔEp,这就是势能定理。⑶物体机械能的增量由重力以外的其他力做的功来量度:W其=ΔE机,(W其表示除重力以外的其它力做的功),这就是机械能定理。⑷当W=0时,说明只有重力做功,所以机械能守恒。⑸一对互为作用力反作用力的摩擦力做的功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。W=fd(d为这两个物体间相对移动的程)。12.汽车在平直道路上由静止出发,保持发动机的功率恒定.当车速为4m/s时,车的加速度为4a;当车速为8m/s时,车的加速度为a,则汽车能达到的最大速度是多少?(设车受到的阻力恒定)
本文标题:功和能高二物理课件
链接地址:https://www.777doc.com/doc-5918883 .html