您好,欢迎访问三七文档
第十四章药物代谢反应drugmetabolism人民卫生出版社药物代谢的酶1第Ⅰ相的生物转化2第Ⅱ相的生物转化3药物代谢在药物研究中的作用4第十四章药物代谢反应drugmetabolism第一节概述introduction•药物代谢是指在酶的作用下将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排出体外,这已成为药理学研究的一个重要组成部分。•当药物进入机体后,一方面药物对机体产生诸多生理作用,即药效和毒性;另一方面,机体也对药物产生作用,即对药物的处置,包括吸收、分布、排泄和代谢。•药物的代谢通常分为两相:第Ⅰ相(phaseⅠ)生物转化和第Ⅱ相(phaseⅡ)生物转化。•第Ⅰ相主要是官能团化反应,在酶的催化下对药物分子的进行氧化、还原、水解和羟化等反应,在药物分子中引入或使药物分子暴露出极性基团,如羟基、羧基、巯基和氨基等。•第Ⅱ相又称为结合反应,将第Ⅰ相中药物产生的极性基团与体内的内源性成分,如葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽,经共价键结合,生成极性大、易溶于水和易排出体外的结合物。第二节药物代谢的酶enzymesfordrugmetabolism•第Ⅰ相生物转化是官能团化反应,是在体内多种酶系的催化下,对药物分子引入新的官能团或改变原有的官能团的过程。•参与药物体内Ⅰ相生物转化的酶类主要是氧化-还原酶和水解酶。药物代谢的酶enzymesfordrugmetabolism酶的分类细胞色素P450酶系(cytochromeP450enzymesystem)还原酶系(reductase)过氧化物酶和单加氧酶(peroxidasesandothermonooxygenases)•水解酶(hydrolases)一、细胞色素P450酶系(cytochromeP450enzymesystem)•细胞色素P450酶系(cytochromeP450enzymesystem,CYP450)是主要的药物代谢酶系,在药物代谢、其他化学物质的代谢、去毒性中起到非常重要的作用。•CYP450存在于肝脏及其他肝脏外组织的内质网中,是一组血红蛋白偶联单加氧酶(heme-coupledmonooxygenases)。需辅酶NADPH(reducedformofnicotinamideadeninedinucleotidephosphate,烟酰胺腺嘌呤二核苷酸磷酸酯的还原态)和分子氧共同参与,主要进行药物生物转化中的氧化反应(包括失去电子、脱氢反应和氧化反应)。•CYP450主要是通过“活化”分子氧,使其中一个氧原子和有机物分子结合,同时将另一个氧原子还原成水,从而在有机药物的分子中引入氧。不同的CYP酶作用药物的代谢CYP1A1多核芳烃的烃基化雌二醇的C-2和C-4-羟基化CYP1A2芳胺、亚硝胺、芳烃、咖啡因的氧化咖啡因的脱甲基化,安替比林的N-脱甲基化CYP2A6香豆素羟化酶香豆素的7-羟基化,萘普生、他克林、氯氮平、美西律等的羟基化CYP2B6环磷酰胺、异环磷酰胺、安非地酮、尼古丁CYP2C是最复杂的一个家族,主要有CYP2C8、CYP2C9和CYP2C19等。与25%用于临床的重要药物代谢有关S-华法林、S-美芬妥英、甲苯磺丁脲的羟基化CYP2D6多态性的氧化酶,与21%用于临床的重要药物代谢有关奎尼丁、氟卡尼、利多卡因、普萘洛尔等药物的氧化CYP2E1含卤代烃的药物,低分子量化合物乙酰氨基苯的氧化挥发性全身麻醉药,乙腈、乙醇、丙酮CYP3A4是体内最重要的代谢酶,与临床1/3以上药物代谢有关红霉素、硝苯地平、环孢素、三唑仑、咪达唑仑等人的不同亚型CYP在药物代谢中的作用二、还原酶系(reductase)•还原酶系主要是催化药物在体内进行还原反应(包括得到电子、加氢反应、脱氧反应)的酶系,通常是使药物结构中的羰基转变成羟基,将含氮化合物还原成胺类,便于进入第Ⅱ相的结合反应而排出体外。•参加体内生物转化还原反应的酶系主要是一些氧化-还原酶系。•具有催化氧化反应和催化还原反应的双重功能,如CYP450酶系;•醛-酮还原酶,这些酶需要NADPH或NADH作为辅酶。•谷胱甘肽氧化还原酶(glutathioneoxidoreductase)•醌还原酶三、过氧化物酶和单加氧酶(peroxidasesandothermonooxygenases)•过氧化物酶属于血红蛋白,是和CYP450单加氧酶最为类似的一种酶。•这类酶以过氧化物作为氧的来源,在酶的作用下进行电子转移,通常是对杂原子进行氧化(如N-脱烃基化反应)和1,4-二氢吡啶的芳构化。•其他的过氧化物酶还有前列腺素-内过氧化物合成酶、过氧化氢酶及髓过氧化物酶(myeloperoxidase)。•单加氧酶中除了CYP450酶系外,还有黄素单加氧酶(flavinmonooxygenase,FMO)和多巴胺β-羟化酶(dopamineβ-hydroxylase)。•FMO和CYP450酶系一起共同催化药物分子在体内的氧化,但FMO通常催化含N和S杂原子的氧化,而不发生杂原子的脱烷基化反应。四、水解酶(hydrolases)•水解酶主要参与羧酸酯和酰胺类药物的水解代谢,这些非特定的水解酶大多存在于血浆、肝、肾和肠中,因此大部分酯和酰胺类药物在这些部位发生水解。然而哺乳类动物的组织中也含有这些水解酶,使药物发生水解代谢。但是药物在肝脏、消化道及血液中更易被水解。•酯水解酶包括酯酶、胆碱酯酶及许多丝氨酸内肽酯酶。其他如芳磺酸酯酶、芳基磷酸二酯酶、β-葡萄糖苷酸酶、环氧化物水解酶(epoxidehydrolase)等,它们和酯水解酶的作用相似。第三节第Ⅰ相的生物转化phaseⅠbiotransformation•第Ⅰ相生物转化是指对药物分子进行官能团化的反应,主要发生在药物分子的官能团上,或分子结构中活性较高、位阻较小的部位,包括引入新的官能团及改变原有的官能团。•氧化反应(oxidations)•还原反应(reductions)脱卤素反应(dehalogenation)•水解反应(hydrolysis)第Ⅰ相的生物转化phaseⅠbiotransformation一、氧化反应(oxidations)•1.芳环及碳-碳不饱和键的氧化•(1)含芳环药物的代谢:含芳环药物的氧化代谢主要是在CYP450酶系催化下进行的。•含芳环药物的氧化代谢是以生成酚的代谢产物为主,一般遵照芳环亲电取代反应的原理,供电子取代基能使反应容易进行,生成酚羟基的位置在取代基的对位或邻位;吸电子取代基则削弱反应的进行程度,生成酚羟基的位置在取代基的间位。•和一般芳环的取代反应一样,芳环的氧化代谢部位也受到立体位阻的影响,通常发生在立体位阻较小的部位。•如果药物分子中含有两个芳环时,一般只有一个芳环发生氧化代谢,如phenytoin和phenylbutazone。•若两个芳环上取代基不同时,一般是电子云较丰富的芳环易被氧化。如抗精神病药氯丙嗪(chlorpromazine)易氧化生成7-羟基化合物,而含氯原子的苯环则不易被氧化。•(2)含烯烃和炔烃药物的代谢:由于烯烃化合物比芳香烃的键活性高,因此烯烃化合物也会被代谢生成环氧化合物。例如抗癫痫药物卡马西平(carbamazepine)。•烯烃类药物经代谢生成环氧化合物后,可以被转化为二羟基化合物,或者将体内生物大分子如蛋白质、核酸等烷基化,从而产生毒性,导致组织坏死和致癌作用。例如黄曲霉素B1(aflatoxinB1)经代谢后生成环氧化合物,该环氧化合物会进一步与DNA作用生成共价键化合物,是该化合物致癌的分子机制。•炔烃类反应活性比烯烃高,被酶催化氧化速度也比烯烃快。根据酶进攻炔键碳原子的不同,生成的产物也不同。如甾体化合物炔雌醇会发生这类酶去活化作用。2.饱和碳原子的氧化(1)含脂环和非脂环结构药物的氧化:烷烃类药物经CYP450酶系氧化后先生成含自由基的中间体,再经转化生成羟基化合物。酶在催化时具有区域选择性,取决于被氧化碳原子附近的取代情况。含自由基的中间体也会在CYP450酶系作用下,发生电子转移,最后脱氢生成烯烃化合物。•长碳链的烷烃常在碳链末端甲基上氧化生成羟基,羟基化合物可被脱氢酶进一步氧化生成羧基,称为ω-氧化;氧化还会发生在碳链末端倒数第二位碳原子上,称ω-1氧化。例如抗癫痫药丙戊酸钠(sodiumvalproate),经ω-氧化生成ω-羟基丙戊酸钠和丙基戊二酸钠;经ω-1氧化生成2-丙基-4-羟基戊酸钠。•烷烃化合物除了ω-和ω-1氧化外,还会在有支链的碳原子上发生氧化,主要生成羟基化合物,如异戊巴比妥(amobarbital)的氧化,其氧化是在有支链的碳原子上。异戊巴比妥•取代的环己基药物在氧化代谢时,一般是环己基的C3及C4上氧化生成羟基化合物,并有顺、反式立体异构体。如降血糖药乙酸己脲(acetohexamide)代谢生成环己基4-羟基化产物。乙酸己脲(2)和sp2碳原子相邻碳原子的氧化:当烷基碳原子和sp2碳原子相邻时,如羰基的碳原子、苄位碳原子及烯丙位的碳原子,由于受到sp2碳原子的作用,使其活化反应性增强,在CYP450酶系的催化下,易发生氧化生成羟基化合物。处于羰基位的碳原子易被氧化,如镇静催眠药地西泮(diazepam),经代谢后生成替马西泮(temazepam)地西泮替马西泮3.含氮化合物的氧化•含氮药物的氧化代谢主要发生在两个部位:一是在和氮原子相连接的碳原子上,发生N-脱烷基化和脱氨反应;另一是发生N-氧化反应。•(1)N-脱烷基化和脱氨反应:N-脱烷基和氧化脱氨是胺类化合物氧化代谢过程的两个不同方面,本质上都是碳-氮键的断裂。•是与氮原子相连的烷基碳原子上应有氢原子(即-氢原子),该-氢原子被氧化成羟基,生成的-羟基胺是不稳定的中间体,会发生自动裂解。•如β受体阻滞剂普萘洛尔(propranolol)的代谢有两条不同途径。•胺类化合物氧化N-脱烷基化的基团通常是甲基、乙基、丙基、异丙基、丁基、烯丙基和苄基,以及其他含-氢原子的基团。取代基的体积越小,越容易脱去。对于叔胺和仲胺化合物,叔胺的脱烷基化反应速度比仲胺快。利多卡因•胺类药物代谢脱N-烷基化后,通常会产生活性更强的药物,例如三环类抗抑郁药物丙米嗪(imipramine)经脱N-甲基代谢生成地昔帕明(desipramine)也具有抗抑郁活性。或产生毒副作用,例如上述的利多卡因的代谢以及N-异丙甲氧明(N-isopropylmethoxamine)经脱N-烷基后生成甲氧明(methoxamine),会引起血压升高,临床上用于升高血压。丙米嗪地昔帕明N-异丙甲氧明甲氧明•(2)N-氧化反应:一般来说,胺类药物在体内经氧化代谢生成稳定的N-氧化物,主要是叔胺和含氮芳杂环,而伯胺和仲胺类药物的这种代谢通常比较少。伯胺和仲胺结构中如果无-氢原子,则氧化代谢生成羟基胺、亚硝基或硝基化合物。酰胺类化合物的氧化代谢也与之相似。•叔胺经N-氧化后生成化学性质较稳定的N-氧化物,而不再进一步发生氧化反应,如抗高血压药胍乙啶(fuanethidine),在环上的叔胺氮原子氧化生成N-氧化物。胍乙啶N-氧化物•抗组胺药赛庚啶(cyproheptadine)在狗体内代谢时,主要产生-N-氧化物,而没有β-N-氧化物生成,这是由于体内酶所发挥的立体选择性的结果。如果在正常情况下,用过氧化氢氧化赛庚啶,则可以得到-和β-两种N-氧化物。赛庚啶-N-氧化物•芳香伯胺和仲胺在N-氧化后,形成的N-羟基胺会在体内第Ⅱ相生物转化反应中结合生成乙酸酯或硫酸酯。由于乙酸酯基和硫酸酯基是比较好的离去基团,因此,形成的酯易和生物大分子如蛋白质、DNA及RNA反应生成烷基化的共价键,产生毒副作用。•酰胺类药物也会经历N-氧化代谢。但只有伯胺和仲胺形成的酰胺才有这样的反应,得到的是N-羟基化合物;而叔胺的酰胺不进行N-氧化反应。芳香胺的酰胺和上面叙及的芳香伯胺、仲胺一样,生成的羟胺中间体会被活化,然后和生物大分子反应,产生细胞毒和致癌的毒性。4.含氧化合物的氧化•含氧化物的氧化代谢以醚类药物为
本文标题:14 药物化学
链接地址:https://www.777doc.com/doc-5960042 .html