您好,欢迎访问三七文档
12有机化学习题课有机化合物的命名。基本概念与理化性质比较。完成反应式。有机化学反应历程。有机化合物的分离与鉴别。有机化合物的合成。有机化合物的结构推导。3有机化合物的命名一、衍生物命名要点:(1)每类化合物以最简单的一个化合物为母体,而将其余部分作为取代基来命名的。(2)选择结构中级数最高或对称性最好的碳原子为母体碳原子。(1)CCH3CH3CHCH2CH2CH3CH3CH3二甲基正丙基异丙基甲烷CCH3CH3CH2CH3CCH3CH3CH3(2)二叔丁基甲烷例:4C=CH2CH3CH3CH2(3)不对称甲基乙基乙烯CH=CHCH3CH2CH(CH3)2(4)对称乙基异丙基乙烯注:[两个取代基与同一个双键碳原子相连,统称为“不对称”;取代基分别与两个双键碳原子相连,统称为“对称”。显然,冠以“对称或不对称”与取代基是否相同无关。]二、系统命名法思考:(1)(2)(3)HCCCH=CH2C6H5CC6H5=OC6H5CC6H5C6H5OH系统命名的基本方法是:选择主要官能团→确定主链位次→排列取代基列出顺序→写出化合物全称。5要点:1.“最低系列”——当碳链以不同方向编号,得到两种或两种以上不同的编号序列时,则顺次逐项比较各序列的不同位次,首先遇到位次最小者,定为“最低系列”。CH3CH2CHCHCH2CHCH3CH2CH(CH3)2CH3CH32452456√2,5-二甲基-4-异丁基庚烷2.“优先基团后列出”——当主碳链上有多个取代基,在命名时这些基团的列出顺序遵循“较优基团后列出”的原则,较优基团的确定依据是“次序规则”。6CH3CH2CH2CHCHCH2CH2CH2CH2CH3CH(CH3)2CH2CH2CH2CH3√两条等长碳链选择连有取代基多的为主链。异丙基优先于正丁基。5-(正)丁基-4-异丙基癸烷3.分子中同时含双、叁键化合物(1)双、叁键处于不同位次——取双、叁键具有最小位次的编号。(2)双、叁键处于相同的编号,选择双键以最低编号。CHCCHCH2CH3CH3-甲基-1-戊烯-4-炔(CH3)2CHCH2CHC=CHCHCHCH33-异丁基-4-己烯-1-炔7思考:CH2CHCHCH2CHCHCHCHCCH3CHCHCH2CHCH3CH3ClCH2CH3HCCCH2CH2C=CHCHOCH=CH2CH3COCH2CHCH3=CCH3CH2=CCHCH=COOHCH2CH(CH3)2CH3C2H5CH(CH3)2CH3NH2COOH4.桥环与螺环化合物H3CCH3CH3编号总是从桥头碳开始,经最长桥→次长桥→最短桥。1,8,8-三甲基二环[3.2.1]-6-辛烯125688CH3CH3最长桥与次长桥等长,从靠近官能团的桥头碳开始编号。5,6-二甲基二环[2.2.2]-2-辛烯最短桥上没有桥原子时应以“0”计。二环[3.3.0]辛烷CH(CH3)2编号总是从与螺原子邻接的小环开始。21451-异丙基螺[3.5]-5-壬烯三、立体异构体的命名1.Z/E法——适用于所有顺反异构体。按“次序规则”,两个‘优先’基团在双键同侧的构型为9Z型;反之,为E型。CC=CC=HHCH2HH(CH2)7COOHCH3(CH2)4↑↑↑↑(9Z,12Z)-9,12-十八碳二烯酸顺/反和Z/E这两种标记方法,在大多数情况下是一致的,即顺式即为Z式,反式即为E式。但两者有时是不一致的,如:CCCH3CH3C2H5H反–3–甲基–2–戊烯(Z)–3–甲基–2–戊烯对于多烯烃的标记要注意:在遵守“双键的位次尽可能小”的原则下,若还有选择的话,编号由Z型双键一端10开始(即Z优先于E)。CCC2H5HCCCCHHHHClCl12345,63-(E-2-氯乙烯基)-(1Z,3Z)-1-氯-1,3-己二烯2.R/S法——该法是将最小基团放在远离观察者的位置,在看其它三个基团,按次序规则由大到小的顺序,若为顺时针为R;反之为S。NCH3CH2C6H5C6H5CH2CH=CH2+Cl(R)-氯化甲基烯丙基苄基苯基铵如果给出的是Fischer投影式,其构型的判断:11若最小基团位于竖线上,从平面上观察其余三个基团由大到小的顺序为顺时针,其构型仍为“R”;反之,其构型“S”。若最小基团位于横线上,从平面上观察其余三个基团由大到小的顺序为顺时针,其构型仍为“S”;反之,其构型“R”。CH3BrOHCOOHCH3BrOHCOOHS-型R-型CCHOHCH3=CHHCH3(2R,3Z)-3-戊烯-2-醇12CCHCH3=CHHCH3C2H5CCH3C2H5RS两个相同手性碳,R优先于S。12345,61'(Z)-(1’R,4S)-4-甲基-3-(1’-甲基丙基)-2-己烯3.桥环化合物内/外型的标记桥上的原子或基团与主桥在同侧为外型(exo-);在异侧为内型(endo-)。主桥的确定:O桥含杂原子桥含较少原子饱和的桥主桥主桥主桥此外,桥所带的取代基数目少;桥所带的取代基按“13次序规则”排序较小。OHHClClHH外-二环[2.2.2]-5-辛烯-2-醇外-2,内-3-二氯[2.2.1]庚烷四、多官能团化合物的命名当分子中含有两种或两种以上官能团时,其命名遵循官能团优先次序、最低系列和次序规则。COCHCH2COOHCH33-(2-萘甲酰基)丁酸(羧基优于酰基)14(CH3CH2)2NC=OOCH(CH3)2二乙氨基甲酸异丙酯(烷氧羰基优于氨基甲酰基)思考:C=OOHOCH2CH3CCH2CH==OCHCH2CHOCBrCH3=NOHHCH3CH2CH3C=CHHCH3CH3HONHCH3C6H5HHCC=HHCH2CH3CH3CH3CH3BrCl15基本概念与理化性质比较一、有关物理性质的问题有机化学中的基本概念内容广泛,很难规定一个确切的范围。这里所说的基本概念主要是指有机化学的结构理论及理化性能方面的问题,如:化合物的物理性质、共价键的基本属性、电子理论中诱导效应和共轭效应的概念、分子的手性、酸碱性、芳香性、稳定性、反应活性等。这类试题的形式也很灵活,有选择、填空、回答问题、计算等。1.沸点与分子结构的关系16化合物沸点的高低,主要取决于分子间引力的大小,分子间引力越大,沸点就越高。而分子间引力的大小受分子的偶极矩、极化度、氢键等因素的影响。化合物的沸点与结构有如下规律:(1)在同系物中,分子的相对质量增加,沸点升高;直链异构体的沸点>支链异构体;支链愈多,沸点愈低。沸点(℃):-0.536.127.99.5CH3CH2CH2CH3;CH3CH2CH2CH2CH3;CH3CHCH2CH3;CH3CCH3;CH3CH3CH3(2)含极性基团的化合物(如:醇、卤代物、硝基化合17物等)偶极矩增大,比母体烃类化合物沸点高。同分异构体的沸点一般是:伯异构体>仲异构体>叔异构体。CH3CH2CH2CH3;CH3CH2CH2CH2Cl;CH3CH2CH2CH2NO2;沸点(℃):-0.578.4153CH3CH2CH2CH2OH;CH3CHCH2CH3;OHCCH3OHCH3CH3;沸点(℃):117.799.582.5(3)分子中引入能形成缔合氢键的原子或原子团时,则沸点显著升高,且该基团愈多,沸点愈高。CH3CH2CH3;CH3CH2CH2OH;CH2CH2CH2;OHOHCH2CHCH2;OHOHOH沸点(℃):-459721629018CH3CH2OH,CH3CH2OCH2CH3;CH3COOH,CH3COOC2H5;沸点(℃):7834.611877形成分子间氢键的比形成分子内氢键的沸点高。NO2OHNOHOO沸点(℃):279215(4)在顺反异构体中,一般顺式异构体的沸点高于反式。HHClClCH3CH3HHCH3CH3HHCCHHClClCC沸点(℃):60.14837292.熔点与分子结构的关系19熔点的高低取决于晶格引力的大小,晶格引力愈大,熔点愈高。。而晶格引力的大小,主要受分子间作用力的性质、分子的结构和形状以及晶格的类型所支配。晶格引力:以离子间的电性吸引力最大,偶极分子间的吸引力与分子间的缔合次之,非极性分子间的色散力最小。因此,化合物的熔点与其结构通常有以下规律:1.以离子为晶格单位的无机盐、有机盐或能形成内盐的氨基酸等都有很高的熔点。2.在分子中引入极性基团,偶极矩增大,熔点、沸点都升高,故极性化合物比相对分子质量接近的非极性化合20物的熔点高。3.在分子中引入极性基团,偶极矩增大,熔点、沸点都升高,故极性化合物比相对分子质量接近的非极性化合物的熔点高。但在羟基上引入烃基时,则熔点降低。OHOHOHOHOCH3熔点(℃):5.441.8105324.能形成分子间氢键的比形成分子内氢键的熔点高。OHCHOOHCOHOCOHCH3OCOHOHOHCOCH3OHCOOH熔点(℃):116-710928213159215.同系物中,熔点随分子相对质量的增大而升高,且分子结构愈对称,其排列愈整齐,晶格间引力增加,熔点升高。CH3CH3CH3CH3CH3CCCH3熔点(℃):10.4-56.83.溶解度与分子结构的关系有机化合物的溶解度与分子的结构及所含的官能团有密切的关系,可用“相似相溶”的经验规律判断。(1)一般离子型的有机化合物易溶于水,如:有机酸盐、胺的盐类。22(2).能与水形成氢键极性化合物易溶于水,如:单官能团的醇、醛、酮、胺等化合物,其中直链烃基<4个碳原子,支链烃基<5个碳原子的一般都溶于水,且随碳原子数的增加,在水中的溶解度逐渐减小。CH3OH;C2H5OH;CH3CH2CH2OH;CH3CH2CH2CH2OH;任意比例互溶7.9%(3).能形成分子内氢键的化合物在水中的溶解度减小。HOCOHOOHNO一些易水解的化合物,遇水水解也溶于水,如酰卤、酸酐等。23二、酸碱性的强弱问题(4).一般碱性化合物可溶于酸,如有机胺可溶于盐酸。含氧化合物可与浓硫酸作用生成盐,而溶于过量的浓硫酸中。CH3CH2OCH2CH3+H2SO4CH3CH2OCH2CH3H+(5)一般酸性有机化合物可溶于碱,如:羧酸、酚、磺酸等可溶于NaOH中。化合物酸碱性的强弱主要受其结构的电子效应、杂化、氢键、空间效应和溶剂的影响。1.羧酸的酸性24(1)脂肪族羧酸连有-I效应的原子或基团,使酸性增强;连有+I效应的原子或基团,使酸性减弱。CH3COOHpKa0.651.292.664.76Cl3CCOOHCl2CHCOOHClCH2COOHCH3CH2CH2COOHClClpKa2.844.064.524.82ClCH3CH2CHCOOHCH3CHCH2COOHCH2CH2CH2COOHICH2COOHpKa1.232.662.862.903.16O2NCH2COOHFCH2COOHClCH2COOHBrCH2COOH-I效应↑,酸性↑。诱导效应具有加和性。诱导效应与距离成反比。25(2)芳香族羧酸芳环上的取代基对芳香酸酸性的影响要复杂的多。一般来说,在芳环上引入吸电子基团,使酸性增强;引入供电子基团使酸性减弱。而且还与基团所连接的位置有关。A.对位取代芳香酸的酸性同时受诱导效应和共轭效应的影响。COOHCOOHCOOHCOOHNO2ClHOCH3-I、-C效应-I>+C+C>-IpKa3.423.994.204.4726B.间位取代芳香酸的酸性,因共轭效应受阻,主要受诱导效应的影响。COOHCOOHCOOHCOOHCOOHNO2ClOHOCH3-I效应-I-I-IpKa3.453.834.084.094.20C.邻位取代芳香酸的酸性都较苯甲酸的酸性强。这主要是电子效应和空间效应综合影响的结果。由于邻位取代基的空间效应使苯环与羧基难以形成共平面,难以产生共轭效应(苯环与羧基共轭时,苯环具有+C效应);另一方面邻位取代基与羧基的距离较近,-I效应的27影响较大,故酸性增强。COOHCOOHCOOHNO2NO2NO2pKa2.173.423.45COOHCOOHCOOHOCH3OCH3OCH3pKa4.094.094.47有的邻位基团能与羧基形成氢
本文标题:大学有机化学复习题
链接地址:https://www.777doc.com/doc-5963541 .html