您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 解析几何教程+(廖华奎王宝富)+课后习题
第一章向量代数习题1.11.试证向量加法的结合律,即对任意向量,,,,,,,,abcabcabcabc成立()().()().()().()().abcabcabcabcabcabcabcabc++=++++=++++=++++=++证明:作向量,,,,,,,,uuuruuuruuurABaBCbCDcABaBCbCDcABaBCbCDcABaBCbCDc============(如下图),AAAABBBBCCCCDDDDaaaabbbbccccabababab++++bcbcbcbc++++则()(),()(),()(),()(),uuuruuuruuuruuuruuuruuurabcABBCCDACCDADabcABBCCDACCDADabcABBCCDACCDADabcABBCCDACCDAD++=++=+=++=++=+=++=++=+=++=++=+=()(),()(),()(),()(),uuuruuuruuuruuuruuuruuurabcABBCCDABBDADabcABBCCDABBDADabcABBCCDABBDADabcABBCCDABBDAD++=++=+=++=++=+=++=++=+=++=++=+=故()().()().()().()().abcabcabcabcabcabcabcabc++=++++=++++=++++=++2.设,,,,,,,,abcabcabcabc两两不共线,试证顺次将它们的终点与始点相连而成一个三角形的充要条件是0.0.0.0.abcabcabcabc++=++=++=++=证明:必要性,设,,,,,,,,abcabcabcabc的终点与始点相连而成一个三角形ABCABCABCABC∆∆∆∆,AAAABBBBCCCCaaaabbbbcccc则0.0.0.0.uuuruuuruuuruuuruuuruuurabcABBCCAACCAAAabcABBCCAACCAAAabcABBCCAACCAAAabcABBCCAACCAAA++=++=+==++=++=+==++=++=+==++=++=+==充分性,作向量,,,,,,,,uuuruuuruuurABaBCbCDcABaBCbCDcABaBCbCDcABaBCbCDc============,由于0,0,0,0,uuuruuuruuuruuuruuuruuurabcABBCCDACCDADabcABBCCDACCDADabcABBCCDACCDADabcABBCCDACCDAD=++=++=+==++=++=+==++=++=+==++=++=+=所以点AAAA与DDDD重合,即三向量,,,,,,,,abcabcabcabc的终点与始点相连构成一个三角形。3.试证三角形的三中线可以构成一个三角形。证明:设三角形ABCABCABCABC∆∆∆∆三边,,,,,,,,ABBCCAABBCCAABBCCAABBCCA的中点分别是,,,,,,,,DEFDEFDEFDEF(如下图),并且记AAAABBBBaaaabbbbccccEEEEFFFFDDDD,,,,,,,,uuuruuuruuuraABbBCcCAaABbBCcCAaABbBCcCAaABbBCcCA============,则根据书中例1.1.1,三条中线表示的向量分别是111111111111(),(),(),(),(),(),(),(),(),(),(),(),222222222222uuuruuuruuurCDcbAEacBFbaCDcbAEacBFbaCDcbAEacBFbaCDcbAEacBFba=−=−=−=−=−=−=−=−=−=−=−=−所以,111111111111()()()0,()()()0,()()()0,()()()0,222222222222uuuruuuruuurCDAEBFcbacbaCDAEBFcbacbaCDAEBFcbacbaCDAEBFcbacba++=−+−+−=++=−+−+−=++=−+−+−=++=−+−+−=故由上题结论得三角形的三中线,,,,,,,,CDAEBFCDAEBFCDAEBFCDAEBF可以构成一个三角形。4.用向量法证明梯形两腰中点连线平行于上、下底且等于它们长度和的一半。证明:如下图,梯形ABCDABCDABCDABCD两腰,,,,BCADBCADBCADBCAD中点分别为,,,,EFEFEFEF,记向量,,,,uuuruuurABaFAbABaFAbABaFAbABaFAb========,AAAABBBBaaaabbbbEEEEFFFF则,,,,uuurDFbDFbDFbDFb====而向量uuurDCDCDCDC与uuurABABABAB共线且同向,所以存在实数0,0,0,0,λλλλ使得....uuuruuurDCABDCABDCABDCABλλλλ====现在,,,,uuurFBbaFBbaFBbaFBba=+=+=+=+,,,,uuurFCbaFCbaFCbaFCbaλλλλ=−+=−+=−+=−+由于EEEE是BCBCBCBC的中点,所以1111111111111111()()(1)(1).()()(1)(1).()()(1)(1).()()(1)(1).2222222222222222uuuruuuruuuruuurFEFBFCbaabaABFEFBFCbaabaABFEFBFCbaabaABFEFBFCbaabaABλλλλλλλλλλλλ=+=++−=+=+=+=++−=+=+=+=++−=+=+=+=++−=+=+且111111111111(1)()().(1)()().(1)()().(1)()().222222222222uuuruuuruuuruuuruuuruuurFEABABABABDCFEABABABABDCFEABABABABDCFEABABABABDCλλλλλλλλ=+=+=+=+=+=+=+=+=+=+=+=+故梯形两腰中点连线平行于上、下底且等于它们长度和的一半。5.试证命题1.1.2。CCCCDDDDCCCC证明:必要性,设,,,,,,,,abcabcabcabc共面,如果其中有两个是共线的,比如是,,,,abababab,则,,,,abababab线性相关,从而,,,,,,,,abcabcabcabc线性相关。现在设,,,,,,,,abcabcabcabc两两不共线,则向量cccc可以在两个向量,,,,abababab上的进行分解,即作以cccc为对角线,邻边平行于,,,,abababab的平行四边形,则存在实数,,,,λµλµλµλµ使得cabcabcabcabλµλµλµλµ=+=+=+=+,因而,,,,,,,,abcabcabcabc线性相关。充分性,设,,,,,,,,abcabcabcabc线性相关,则存在不全为零的数123123123123,,,,,,,,kkkkkkkkkkkk,使得1231231231230000kakbkckakbkckakbkckakbkc++=++=++=++=。不妨设33330000kkkk≠≠≠≠,则向量cccc可以表示为向量,,,,abababab的线性组合,因此由向量加法的平行四边形法则知道向量cccc平行于由向量,,,,abababab决定的平面,故,,,,,,,,abcabcabcabc共面。6.设,,,,,,,,ABCABCABCABC是不共线的三点,它们决定一平面ΠΠΠΠ,则点PPPP在ΠΠΠΠ上的充要条件是存在唯一的数组(,,)(,,)(,,)(,,)λµνλµνλµνλµν使得,,,,(*)(*)(*)(*)1,1,1,1,uuuruuuruuuruuurOPOAOBOCOPOAOBOCOPOAOBOCOPOAOBOCλµνλµνλµνλµνλµνλµνλµνλµν⎧⎧⎧⎧=++=++=++=++⎪⎪⎪⎪⎨⎨⎨⎨++=++=++=++=⎪⎪⎪⎪⎩⎩⎩⎩其中,OOOO是任意一点。PPPP在ABCABCABCABC∆∆∆∆内的充要条件是(*)与0,0,00,0,00,0,00,0,0λµνλµνλµνλµν≥≥≥≥≥≥≥≥≥≥≥≥同时成立。证明:必要性,作如下示意图,连接APAPAPAP并延长交直线BCBCBCBC于RRRR。AAAABBBBCCCCOOOORRRRPPPP则由三点,,,,,,,,BRCBRCBRCBRC共线,存在唯一的数组12121212,,,,kkkkkkkk使得12121212ORkOBkOCORkOBkOCORkOBkOCORkOBkOC=+=+=+=+uuuruuuruuur,并且121212121111kkkkkkkk+=+=+=+=。由三点,,,,,,,,APRAPRAPRAPR共线,存在唯一的数组12121212,,,,llllllll使得12121212OPlOAlOROPlOAlOROPlOAlOROPlOAlOR=+=+=+=+uuuruuuruuur,并且121212121111llllllll+=+=+=+=。于是1212122121212212121221212122OPlOAlORlOAlkOBlkOCOPlOAlORlOAlkOBlkOCOPlOAlORlOAlkOBlkOCOPlOAlORlOAlkOBlkOC=+=++=+=++=+=++=+=++uuuruuuruuuruuuruuuruuur,设12122121221212212122,,,,,,,,,,,,llklkllklkllklkllklkλµνλµνλµνλµν============由12121212,,,,kkkkkkkk,12121212,,,,llllllll的唯一性知道(,,)(,,)(,,)(,,)λµνλµνλµνλµν的唯一性,则,,,,OPOAOBOCOPOAOBOCOPOAOBOCOPOAOBOCλµνλµνλµνλµν=++=++=++=++uuuruuuruuuruuur且121221212212122121221111llklkllklkllklkllklkλµνλµνλµνλµν++=++=++=++=++=++=++=++=。充分性,由已知条件有(1)(1)(1)(1)OPOAOBOCOAOBOCOPOAOBOCOAOBOCOPOAOBOCOAOBOCOPOAOBOCOAOBOCλµνλµλµλµνλµλµλµνλµλµλµνλµλµ=++=++−−=++=++−−=++=++−−=++=++−−uuuruuuruuuruuuruuuruuuruuur()()()()()()()()OAOCOBOCOCOAOCOBOCOCOAOCOBOCOCOAOCOBOCOCλµλµλµλµ=−+−+=−+−+=−+−+=−+−+uuuruuuruuuruuuruuurCACBOCCACBOCCACBOCCACBOCλµλµλµλµ=++=++=++=++uuuruuuruuur,得到CPCACBCPCACBCPCACBCPCACBλµλµλµλµ=+=+=+=+uuuruuuruuur,因而向量,,,,,,,,CPCACBCPCACBCPCACBCPCACBuuuruuuruuur共面,即PPPP在,,,,,,,,ABCABCABCABC决定的平面上。如果PPPP在ABCABCABCABC∆∆∆∆内,则PPPP在线段ARARARAR内,RRRR在线段BCBCBCBC内,于是12121212121212120,,,10,,,10,,,10,,,1kkllkkllkkllkkll≤≤≤≤≤≤≤≤,则0,,10,,10,,10,,1λµνλµνλµνλµν≤≤≤≤≤≤≤≤。如果(*)成立且0,,10,,10,,10,,1λµνλµνλµνλµν≤≤≤≤≤≤≤≤,则有CPCACBCPCACBCPCACBCPCACBλµλµλµλµ=+=+=+=+uuuruuuruuur,这说明点PPPP在角ACBACBACBACB∠∠∠∠内。同样可得到APABACAPABAC
本文标题:解析几何教程+(廖华奎王宝富)+课后习题
链接地址:https://www.777doc.com/doc-5967930 .html